
Dirk Hufnagel, FNAL

Using non-CMS resources
(assuming local batch interface)

Bologna Meeting, 18.09.2014



2

Use case

● We have a resource we are allowed to use,
but that resource

a) only has a locally usable batch system to run jobs
b) does not provide a local CMS environment

for our jobs to function (software / services)

● Caveat: If the resource has a grid or cloud interface,
point a is not relevant, but point b usually still would be



3

Problems

● This immediately leads to two separate problems

● Submission challenge:

How do we get our jobs onto this resource ?
(in a way that integrates well into our WM systems)

Caveat: Grid or cloud interfaces work as-is

● Runtime challenge:

How do we get our jobs to run ?
(given no local CMS software and services and
no local support to provide them on a system
wide basis)



4

Submission challenge

● No problem if grid interface or cloud interface exists. 
For the latter, it depends on the implementation details, 
but OpenStack and EC2 are both supported directly by 
glideinWMS (future relevant ones would also be 
supported this way presumably)

● If the resource only has local batch submissions (the 
HPC resources we used do or are only starting to play 
with grid interfaces and then not expose all their 
functionality), we have an issue.

● For transparent use in CMS, access needs to be 
integrated into glideinWMS.

This is where BOSCO came in



5

BOSCO

● BOSCO is a tool to allow researchers to access remote 
accounts at different computing centers directly from 
their desktops via ssh tunnels. They would submit 
locally, the jobs would get routed to the remote 
resource, jobs could be tracked from the local desktop 
and output could be retrieved.

http://bosco.opensciencegrid.org/

● Sounds close to what we need

http://bosco.opensciencegrid.org/


6

BOSCO

● Under the hood, BOSCO is essentially a complete 
HTCondor installation on the local desktop that 
connects via ssh to the remote resource, with some 
small code setup needed at the remote end to be
able to interface with the batch system

● Now, glideinWMS is also mostly HTCondor under the 
hood, so this is interesting

● So what we did is to take the ssh tunneling used by 
BOSCO (which was an undocumented HTCondor 
feature at the time) and made it usable in a glideinWMS 
setup to submit pilots from the factory.



7

BOSCO

● The only piece we directly use from BOSCO right now is 
the deployment instructions for setting up the code at 
the remote site to interface with the local batch system

● Once this is setup, access is directly through the 
glideinWMS factory, with an endpoint configured in the 
factory that can submit pilots through an ssh tunnel.

(like for other grid or cloud entries)



8

BOSCO : Security

● For accessing the remote resource through an ssh 
tunnel, one has to have an ssh private key that logs into 
a production account at the remote end

● At the moment the key is stored in the factory, which is 
not optimal, as the factory is supposed to be open and 
usable by many users, even many VOs

● We work around it right by having dedicated 
glideinWMS setups just for BOSCO style submissions, 
eventually ssh key management will move into the 
frontend.



9

BOSCO : deployment

● Eventually we want to automate the code setup at the 
remote resource for interfacing to the batch system

● Convenience feature really, as it is a one-time task for 
each remote resource. 



10

Runtime challenge

● The CMS software needs both code, some general 
software environment describing the local resources 
and how to interact with them and services to function.

● Code: usually provided via cvmfs

● SITECONF: config file read from standardized place in 
the local filesystem describing how jobs can read data, 
how they can stageout data, what the local proxy 
servers to access information over http (for cvmfs and 
for conditions data) are etc

● At a non-CMS site where we are one use among many, 
there is little chance to make modifications system wide 
to provide these.



11

Runtime challenge

● I mentioned services before and by that I mean the 
proxy servers for accessing information over http

● We can live without them locally, but that means using 
some proxy servers that are in a non-local network (at a 
close CMS site), decreasing both the local job efficiency 
due to added latency and increasing the offsite network 
bandwidth use.

● This is an efficiency optimization to first order, but can 
become critical depending on the scale of CMS work at 
the non-CMS resource (overloading networks etc).



12

Parrot wrapper script

● GlideinWMS pilots support validation scripts

● Usually these are to make sure that the local 
environment can in principle run payloads, no
point in even trying if it'll eventually fail

● But it can support more and that's where the
parrot wrapper script comes in

● Parrot is a virtual file system that allows to mount
(remote) file systems in user space

http://ccl.cse.nd.edu/software/parrot/

http://ccl.cse.nd.edu/software/parrot/


13

Parrot wrapper script

● The glideinWMS parrot wrapper script we use runs 
inside the pilot and (among a few other things) wraps
the payload into a parrot shell

● It provides the SITECONF (configuration is stored in 
the factory) and also mounts cvmfs (only if needed),
so the payload can access the CMS code

● For non-CMS cpu-only resources with no local proxy 
servers a SITECONF would configure things to read 
data exclusively remotely via xrootd and stageout to
a close CMS site (FNAL or CERN for instance) and
also configure for FNAL or CERN proxy servers



14

Parrot wrapper script

● There is support for auto-detecting local proxy servers 
and injecting them into the SITECONF, but this is still 
somewhat experimental

● There are also concerns about the dimensioning of the 
local proxy servers. We don't want to kill them.

● This feature needs some work to be generally useful. 
It's active at the moment for using US grid sites 
opportunistically, but there we limit ourself to 1000 jobs 
per resource to avoid damage to the site infrastructure.


	Title
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

