

The LHCb DAQ system

Domenico Galli

Alma Mater Studiorum – Università di Bologna e INFN, Sezione di Bologna

> SuperB Computing Workshop Frascati, 17th December 2008

Outline

- LHCb feature:
 - LHCb rates.
 - Comparison with other experiments.
- LHCb DAQ/trigger overview:
 - Layout.
 - Key design features.
 - Data flow.
 - Components:
 - Timing and fast control.
 - Readout boards.
 - Readout network.
 - Event filter farm.
- Beyond LHCb:
 - 10 Gb/s technologies.
 - Readout boards.

The LHCb DAQ system 2 Domenico Galli

LHCb Rates

- Experiment raw data:
 - LHC bunch crossing rate: 40 MHz.
 - LHCb luminosity: 2×10^{32} cm⁻² s⁻¹:
 - Single interaction preferred to better match the B decay to its production vertex.
 - Visible cross section: 70 mb.
 - At least 2 tracks in the acceptance.
 - Event rate: 10 MHz (events with at least one interaction).
 - Event size: 35 KiB/event.
 - 330 GiB/s
- Events of interest:
 - Beauty production cross section: 500 μb.
 - 100 kHz beauty pairs.
 - Branching fraction of the events of interest: 10⁻⁶ ÷ 10⁻⁵.
 - ~10 Hz of events of interest (all HLT channels).
- Events to be written to tape:
 - 200 Hz of exclusive B meson decay modes.
 - 1.8 kHz of inclusive b-decays and calibration signals.
 - 68 MiB/s.

Trigger Rate and Event Size Trends

Istituto Nazionale di Fisica Nucleare

LHCb Trigger Overview

- 2 stage trigger system:
 - Level-0: synchronous in hardware; 40 MHz → 1 MHz.
 - HLT: software on CPUfarm; 1 MHz → 2 kHz.
- Front-end Electronics:
 - interfaced to Readout Network.
- Readout network:
 - Gigabit Ethernet LAN.
 - Full readout at 1.1 MHz.
 - Throughput: 60 GiB/s.
- Event filter farm:
 - ~ 2200 1 U servers.

~ 18000 CPU cores.

The LHCb DAQ/Trigger Layout

LHCb DAQ: Key Design Features

- Event data read-out from the detector via ~5000 optical links (~100 m long):
 - Maximum raw bandwidth: 160 MiB/s per link.
- Optical links are fed into ~330 read-out boards.
 - TELL1, custom electronics.
 - Zero suppression, time de-randomization, etc.
- On average every 1 μs new data become available at each of the ~330 read-out boards (~100 B/board):
- Data from several 1 µs cycles ("triggers") are concatenated into one IP datagram (MEP, multi-event packet):
 - Reduce the data overhead.
 - Reduce datagram rate:
 - optimize the network efficiency.
- IP packets are pushed over 1000 BaseT Gigabit Ethernet links:
 - Short distances allow using 1000 BaseT throughout.
 - Large Ethernet/IP network (3000 GbE ports). The LHCb DAQ system 7

LHCb DAQ: Key Design Features (II)

- Destination IP <u>AND</u> Ethernet addresses is synchronously and centrally assigned to all TELL1s:
 - Via a custom optical network (TFC, Timing and Fast Control):
 - The LHCb implementation of the standard CERN TTC (Timing and Trigger Control) system.
 - B-channel used to TTC broadcast the destination IP to all TELL1s (Achannel used to TTC broadcast the low-latency LO accept/reject signal).
- For each trigger a PC-server must receive IP packets from all TELL1 boards:
 - In order to perform event-building.
- The TFC System is also used to implement dynamic loadbalancing.
 - The farm nodes announce their availability to the TFC.
- LHCb DAQ uses a push protocol:
 - Global Throttle Mechanism implemented by TFC.

The LHCb DAQ system 8 Domenico Galli

DAQ Components

- Timing and Fast Control
 - Custom build (TFC).
 - Standard CERN TTC interface.
- Readout boards
 - Custom build (TELL1).
 - 4 x Gigabit Ethernet interfaces.
- Readout network
 - COTS (commercial of the shelf) components
 - Core switch (1260 port, 5Tb/s backplane). High End COTS.
 - Edge switches (1 x 44 server rack, 12 GbE uplink, 50 racks).
- Farm PCs (~2200 x 16 cores = 18000 cores)
 - COTS components (twin 2 x 4 core 1u PCs = 16 cores / 1u).
 - Open Source OS (SLC Linux)

Rightsizing the HLT Farm

- The HLT trigger in not designed in order to have a fixed latency.
 - Being the last filter stage.
- We can therefore talk over average values.
- The average time spent for the selection algorithm, $\langle T_s \rangle$, must be less than the average period which separates the input of two following events in the same trigger node, $N_{\rm cpu}/v_{input}$, i.e.: $\langle T_s \rangle \leq N_{\rm cpu}/v_{input}$.
- So must be: $N_{\rm cpu} \ge \langle T_s \rangle \ V_{input}.$
- E.g.: $\langle T_s \rangle \sim 2 \text{ ms}$ and $v_{input} = 1 \text{ MHz}$

• $N_{\rm cpu} \ge 2000$.

The LHCb DAQ system 11 Domenico Galli

Farm Operating System

- Intel-compatible CPUs used on HLT farm can run a number of OSs:
 - Linux, Solaris, Lynx-OS, FreeBSD, Mac-OS, MS Windows, etc.
 - Linux seems to have won out.
 - Exception:
 - BaBar uses Solaris.
 - DØ (Fermilab) was using MS Windows on its L3 Farm (but switched to Linux in Run II).
 - CDF uses V×Works for a specific task (data transfer from VME readout board to ATM network).
- LHCb has chosen SLC Linux as HLT OS.

Farm Worker Nodes

- Each worker node (PC server) in the EFF runs:
 - 1 event-builder process:
 - Assemblies the MEPs and distribute the events among the trigger processes.
 - 8 HLT processes typically (as many as the number of CPU cores).
 - 1 data writer:
 - Sends accepted events to the streaming and formatting layers.
- Data are not moved inside a PC:
 - Data are kept in a shared memory area.
 - Descriptors to the events are passed between processes.
 - By means of a shared buffer library
- Selection algorithm reduce the event rate:
 - 1 MHz → 2-5 kHz.

Farm CPU Racks

 2200 1U rackmounted boxes.

 Operated disk-less.

 2 x 1000Base-T interfaces, to keep separate:

Data;

 ECS (Experimental control system).

The LHCb DAQ system 14 Domenico Galli

High Speed Data Link Technology

- Trend toward COTS technologies:
 - HERA-B:
 - Shark link (proprietary, by Analog Devices) until level 2, than Fast Ethernet.
 - BaBar:
 - Fast Ethernet.
 - DØ:
 - Fast Ethernet / Gigabit Ethernet.
 - CDF:
 - ATM / SCRAMnet (proprietary, by Systran, low latency replicated noncoherent shared memory network).
 - CMS:
 - Myrinet (proprietary, Myricom) / Gigabit Ethernet.
 - Atlas / LHCb / Alice:
 - Gigabit Ethernet.
 - Possible new experiments:
 - 10-Gigabit Ethernet (soon also on copper), 10-40-Gigabit infiniBand, 100-Gigabit Ethernet.

LHCb HLT Core Switch (also in CMS)

Force10 E1200 equipment

- Port densities:
 - 14 slots for line-cards
 - Biggest port density is 90 1000Base-T ports per line-card (90/48 over-committed)
 - 14 × 90 = 1260 1000Base-T ports.
- Switching Fabric
 - Switching capacity is
 - Raw: ~1.6 Tb/s,
 - Usable: ~1.2 Tb/s (140 GiB/s),
 - Backplane capacity: ~5 Tb/s.

The LHCb DAQ system 16 Domenico Galli

Scaling (Doubling) the System

INFN

Istituto Nazionale di Fisica Nucleare

Which Protocol to Move Data through the Read-Out Network?

- Why not **TCP**?
 - To avoid mechanisms which slow down data transmission (slow start, congestion avoidance).
 - Reliability mechanisms (fast retransmission, fast recovery) are useless due to latency constraints:
 - If a fragment of an event is dropped by the network we prefer to get the next event rather than retransmit the same event.
 - Keep the implementation in the FPGA based readout board simple.
- Why not UDP?
 - In our application we have no use for the UDP port numbers,
 - UDP checksum redundant with the Ethernet CRC (Cyclic Redundancy Check) information in a switched network.
 - Also, the UDP checksum is performed by the CPU (at least for fragmented datagrams), as opposed to the Ethernet CRC done by the MAC and so uses up additional resources.
- Why IP?
 - Datagram fragmentation is well defined by the standard.

Gigabit Ethernet IP Transfer Rate (using PCI-X)

Gigabit Ethernet Frame Transfer Rate (using PCI-X)

Why a New Transport Protocol?

- The optimal Ethernet payload/overhead ratio, is achieved when the IP datagram fills completely the 1500 B Ethernet payload.
- Moreover the Gigabit Ethernet throughput drops for small frame size.
- However, each Tell-1 board can send only data-fragments pertaining to the associated sub-detector element, which usually is much smaller (~100 B).
- In order to optimize the payload/overhead ratio, fragments from multiple (~15) events have to be aggregated (MEP, Multi Event Packet) into a single IP datagram.
- MEP is a LHCb custom OSI-level 4 (transport) protocol.
 - OSI-level 3 (network) is IP;
 - OSI-level 2 (datalink) is Ethernet.

The LHCb MEP Protocol over IPv4

TELL1 Boards

- Optical mezzanine (ORx): Optical fibers from CROCs [only up to 8 on 12 links are used per ORx]
- Credit Card PC (CCPC): Connection with ECS
- PP-FPGA: User data compression
- Synclink FPGA: Gathers PP-FPGA information and Build Multiple Event Packet (MEP)
- Giga Bit Ethernet (GBE): Transmits MEP to Event Builder
- TTC Receiver: Clock, LO Trigger, Reset (LOevID BX-ID) and DAQ IP destination address

TELL1 Boards (II)

- Input: 24 x 1.6 Gb/s optical link or 64 x analog copper links.
- Output: 4 x 1000Base-T.
- ECS: Credit card PC (Linux) with separate 100Base-T interface. FE links FE links FE links TELL1 O-Rx A-Rx A-Rx 12 x 1.28 Gbit/s 16 x 10-bit 16 x 10-bit ← PP-FPGA **PP-FPGA PP-FPGA PP-FPGA**

TELL1 Boards (III)

- FIR: Finite Impulse Response filter.
- CM: Common Mode noise corrections.
- After zero suppression, the length of each event is variable.
- Derandomizing buffers are employed to average the data rate and the data processing time.

 To prevent any overflows, each buffer can generate a throttle signal that is sent to the readout supervisor.

The readout supervisor suspends the trigger signal until the buffers have recovered.

The LHCb DAQ system 25 Domenico Galli

LHCb HLT Strategy

- "Trigger Alleys"
 - to exploit and refine, L0 trigger after a partial reconstruction,
 - immediately reject LO misinterpretation.

T

- Inclusive selections

 (D_s, D^{*}, φ and μ).
- Exclusive selections: ~20 channels.

Beyond LHCb: 10 Gb/s Technologies

- Ethernet:
 - 10 Gb/s well established
 - Various optical standards, short range copper (CX4), long range copper over UTP CAT6A standardised), widely used as aggregation technology.
 - Begins to conquer MAN and WAN market (succeeding SONET).
 - Large market share, vendor independent IEEE standard (802.3x).
 - Very active R&D on 100 Gigabit/s and 40 Gigabit/s (will probably die).
- Myrinet:
 - Popular cluster-interconnect technology, low latency.
 - 10 Gb/s standard (optical and copper (CX4) exist)
 - <u>Single vendor</u> (Myricom).
- InfiniBand:
 - Cluster interconnect technology, low latency.
 - 10 Gb/s and 20 Gb/s standards (optical and copper).
 - Open industry standard, several vendors (OEMs) but very few chipmakers (Mellanox).
 - Powerful protocol/software stack (reliable/unreliable datagrams, QoS, out-of-band messages etc...).

10 Gb/s Technologies: Ethernet

- Ethernet still allows simple FIFO-like interface (like in TELL1 cards):
 - However due to the (ridiculously) small frame size use of a higher level protocol (e.g. IP) is mandatory.
- Prices per router port are dropping quickly:
 - But still more expensive than InfiniBand.
 - Copper standard exist, requires cabling Cat 6A.
 - High power consumption optical still very expensive.
- Various NIC cards exist.
- Not yet on the mainboard, but only a question of time

 at least for high end servers.

10 Gb/s Technologies: InfiniBand

- On the source side (TELL10):
 - Nallatech plug-in card.
 - On-board Xilinx Virtex-II Pro FPGA.
 - Up to 20k logic cells of programmable logic per module.
 - Up to 88 Block RAMs and 88 embedded multipliers per module.
 - 2x InfiniBand [™] I/O links.
 - 2x RocketIO serial links.

The LHCb DAQ system 29 Domenico Galli

10 Gb/s Technologies: InfiniBand (II)

- InfiniBand switches:
 - 10 Gb/s standard.
 - 20 Gb/s (DDR, double data rate), 30
 Gb/s (TDR) and 40 Gb/s (QDR) also available.
- Key features:
 - Up to 3456 InfiniBand 4x ports in a single chassis.
 - Up to 110 Tb/s of switching capacity in a single system.
 - 1/2/4 Fibre Channel and 10 Gb/s
 Ethernet interface options.
 - Fully redundant power, cooling and logic components.

The LHCb DAQ system 30 Domenico Galli Edge switch (24 ports)

10 Gb/s Technologies: InfiniBand (III)

- InfiniBand for the Servers.
 - Quite a few InfiniBand Adapter Cards (HCA) exist.
 - Few main-boards exist with onboard InfiniBand adapter:
 - Availability of onboard Gigabit Ethernet NICs makes (copper UTP) Gigabit Ethernet essentially zero-cost on the servers.
 - Physical signaling is compatible (Myricom makes dual personality cards!), there are rumours that Intel will bring out a chipset with both options
 - InfiniBand on the server might have performance advantages.
 - Dual-personality switches exist: they act as an InfiniBand to Ethernet / IP bridge.

10 Gb/s Technologies: InfiniBand (IV)

- Potential advantages of InfiniBand:
 - Low latency & reliable datagrams:
 - Implement pull protocol → could result in much more efficient usage of network bandwidth (currently we can use only ~ 20% of the theoretically available bandwidth).
 - Implement load balancing and destination assignment → no need for custom ("TTC"-like) network for this purpose.
 - Cost per switch-port much lower than in Ethernet (requires much less buffer per port / very high-speed buffer memory is very expensive).
 - Even-building using remote DMA could result in much lower CPU "wasted" for data movement.
 - Currently we cannot handle more than ~ 300 MiB/s per server (for illustration this means that for a 10 MHz readout at current LHCb event size 35 KiB we would need 1000 servers just for the data formatting, checking and moving.

Beyond LHCb. TELL1 → TELL5, TELL10 and TELL40

- EPFL, Lausanne is designing the boards TELL5, TELL10 and TELL40:
 - In bandwidth 5x, 10x and 40x with respect to the current TELL1.
- Input/output data bandwidth:
 - TELL1: 30 Gb/s → 4 Gb/s.
 - TELL10: 328 Gb/s → 40 Gb/s.
 - TELL40: 1311 Gb/s → 140 Gb/s.
- Same tasks as current TELL1:
 - Synchronization to TTC.
 - Data pre-processing to achieve data compression by a factor 10!
 - Data buffering for zero suppression and DAQ interface.
- See presentation of Guido Haefeli at
 - <u>http://indico.cern.ch/conferenceDisplay.py?confId=8351</u>

TELL10 Outline with Current Technology

Summary

- LHCb experiments has a 2 stages trigger system.
- The input rate of the software trigger is the highest among the LHC experiments (1.1 MHz).
- The readout network uses (1) Gigabit Ethernet Technology for a farm of 2200 1u boxes (18000 CPU cores).
- DAQ uses a push protocol, with global throttle mechanism.
- Readout boards (TELL1) send data to 4 × Gigabit Ethernet interfaces.
- Data fragments from readout boards packed in ~15 event groups (MEPs).
- Node destination of a MEP broadcasted by the TFC to all the readout boards.
- TFC implements dynamic load balancing and throttle.
- The system is scalable and can be ported to a higher speed COTS link technology.

