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Geometry in the fastsim

® Barrel: cylinder. Endcaps: disks

® 2D representation, with
thickness used to calculate
interaction probability and
energy loss.

® |f real detector elements are not
projective, edge effect is not
modeled.

® Uniform A; uniform A in
endcaps; uniform rAO in barrel

(or equivalently, uniform in pseudo-rapidity

n=-In(tan(6/2)) ).

L




Proposed backward calorimeter

€ Behind DCH I propose to place Pb-scintillator sampling calorimeter
® 2.8 mm thick Pb plates 2 1/2 X,

® 3.0 mm thick scintillator tiles
® Sizes vary from 3.8 cmx 3.8cm > 7.8 cmx 7.8 cm (R, ~6.0 cm)
.

cylindrical geometry, r=0.31m, r.=0.75 m Pb: R,=1.5 cm
Z view
= coverage~ 300mr

® 24 planes with thickness of 12X,
® scintillator is segmented into tiles, size increasing outwards
2 total: 11,520 channels Not projective

® Scintillator tiles are read out with WLS fibers |
coupled to a SIPM

G. Eigen, SuperB meeting Elba, 31/05/2008
Gerald Eigen 8 ring, 60 tiles/ring
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EMC clusters

® An EMC cluster is represented by the class
PacEmcCluster (inherit from AbsRecoCalO), which
contains a list of pacEmcpigi.The latter represents the
energy deposition in a single crystal.

® Both classes mimic the respective classes in BaBar, but no
calibration, timing, and data flow information is
represented.



Shower library abandoned

® At Elba we proposed using a shower library generated
from full simulation, from which we sample an appropriate
cluster to simulate detector response, in order to faithfully
reproduce the correlation between crystals, especially for
hadron shower.

® We later realized that the shower library is not easy to
implement. A complete implementation requires large
space, non-trivial look-up scheme, and running full
simulation each time when geometry or material is
changed.

® We have basically abandoned the shower library idea, and
try to also parametrize hadronic shower. (see later).



lonization

® |f a particle does not shower in the EMC (effects: norma1,
stop, interact, brems, compton, convert), we S|mply
distribute the energy loss to the crystals it passes
through. Energy is proportional to the path length in each
crystal.

® Curving inside the EMC is ignored.

® FEnergy in each crystal is then smeared according to
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a, b, d are configuration
parameters




One-GeV/c muons
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® Forward: 30cm LSO: 26Xo; Barrel: 30cm Csl: 16Xo:
Backward: |4cm Pb+scintillator: 12Xo.




EM shower

® The lateral shower development is assumed to be symmetric

® On average |0% of the deposited energy lies outside Ry, and about
| % outside 3.5 Rw.

® The radial distribution can be modeled phenomenologically with

2
f(r) = 2r R [PDG2008 Sec. 27.5, or NIM A290, 469]
(21 R2)2

| 2%%/(x*x+1)/{x*x+1) |
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EM shower (ll)

Probability and energy loss of a
shower are determined by radiation
length and path length.

Starting with the crystal where a
particle hits, calculate the integral of
f(r) (numerically) on nearby crystals.

Energy loss is distributed over crystals
according to the integral.

Rm is allowed to fluctuate, so do
energy in each crystal and eccentricity

(axes along O/, no rotation).
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backward EMC

One-GeV photons

“event display”
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(energy-hitp4.E())/hitpd.E{) {nCrys>0&&abs(energy-hitp4.E())<0.4}
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htemp
Entries 7605
Mean -0.03045
RMS 0.05892
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Overflow 0
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(energy-hitp4.E())/hitp4.E()

backward EMC

with much worse
resolution



Performance

® One-GeV photons Blue= FastSim; Red= BaBar full Sim
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Hadronic shower

® Hadronic showers are irregular and difficult to model with
a simple parametrization.

® New idea: use random walk to navigate through crystals
and create large fluctuation to create irregular patterns.



What hadronic showers look like

® Samples of 1GeV/c KL shower shapes from Babar full
simulation (only about 1/2 of all KL leave a cluster in Babar EMC)
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Hadronic shower modeling procedure

|. Determine the total deposited energy E from longitudinal
shower profile plus smearing.

2. Start from the crystal (i,j) where a hadron enters.

3. Determine the average energy Eij in that crystal (a fraction
of E) based on an integral of a 2D Gaussian.

4. Fluctuate Eij using a Poisson with a large quanta.
e Eij = TRandom::Poisson(Eij/quanta) * quanta
* and then smear it : Eij = Eij + TRandom::Gaus(0,0%)
5. Fill that crystal with Eij, and reduce E by Eij.

6. Random walk to a nearby crystal (i, j’) with probabilities
proportional to the 2D Gaussian profile.

/. Repeat step 3 until E <= 0 or has walked too far.
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Test with | GeV/c K°

® Parameters:

Overall profile 0= 7.5 cm
Maximum distance: 30 cm
Energy “quanta” = 50 MeV

Extra fluctuation e = 50 MeV
Minimum energy = | MeV

® Caveat: currently in fastSim when KL interacts, its energy
loss is calculated based on the material’s interaction
length. Due to the difficulty in modeling the longitudinal
profile, we know this energy loss is not yet modeled

properly.



Test examples




Compare with full simulation

blue = fast sing
red = full sim3
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Conclusions

EMC is able to simulate MIPs, EM showers and hadronic showers.
Shower library is abandoned.

It is possible to generate very irregular shower shape with
random walk.

We haven’t spent any time tuning parameters. Performance does
not match full simulation well yet.

Many still need to be done:

® |ongitudinal shower profile, track-cluster matching, cluster
merging/splitting, validation plots macros, etc...
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