SuperB G4 Full Simulation PID (=DIRC) Status

The short version...

No one is actively working on this!

There is also a longer version...

David Aston, SLAC

SuperB Computing Workshop Frascati 16 December 2008

All proposed versions of SuperB include the DIRC

- detailed material distribution (affects EMC and IFR)
- simulation of Cherenkov process

BaBar G4 simulation contains a detailed material model Easy to re–use

Schematic of DIRC principle $Detector \ of \ Internally \ Reflected \ Cherenkov \ light$

Require very tight tolerances on bars:

- flat & smooth surfaces
- square & sharp edges

Visibility of laser beam → imperfections!

close-up of PMTs

Photon detectors will be replaced / re-designed.

Standoff box, one door open

Detailed simulation of Cherenkov process

- above threshold, EM "shock wave" on a cone
- $\cos \vartheta_c = 1 / \beta n$ (n~1.473); dispersive, $n = n(\lambda)$
- propagates at group velocity $c/\{n \lambda dn/d\lambda\}$
- when β n > $\sqrt{2}$, some photons always captured
- photon radiation rate ~ $\sin^2 \vartheta_c \Rightarrow$ few photons to detect close to threshold
- get accurate measurement of time of arrival of photons; very effective in removing background

In BaBar, this simulation uses the DetectorModel package

Detailed simulation of Cherenkov process

Most of the code should be re–usable! We did not always ray–trace every photon... In a bar, photons are propagated to the wedge in a single step

Processes which are taken into account, most $f(\lambda)$:

- optical dispersion
- absorption in bulk material
- surface roughness losses at total internal reflection
- mirror reflection
- reflection at glue joints (mis-matched index)
- quantum efficiency of photon detectors

Summary

- No one is actively working on this!
- Depending on priorities and manpower, progress could be made on quite quickly.
- Volunteers are welcome! [Previous experience with BaBar code would be helpful.]

- Many ray ambiguities: up/down, left/right, forward/ backward, wedge/no-wedge
- Typically only 2—3 sensible solutions

Single photon performance from di-muon events

DIRC PERFORMANCE

Number of Cherenkov photons per track (di-muons) vs. polar angle:

Between 20 and 60 signal photons per track.

Very useful feature in BABAR environment: higher momentum correlated with larger polar angle values

> \rightarrow more signal photons, better resolution (~ 1/ \sqrt{N})

Resolution of Cherenkov angle fit per track (di-muons):

 $\sigma(\Delta \theta_c) = 2.4 \text{ mrad}$

Track Cherenkov angle resolution is within ~10% of design.

Should improve with advances in track- and DIRC-internal alignment.

RICH2004, Playa del Carmen, Nov 30-Dec 6, 2004

Jochen Schwiening, SLAC

19/24

DIRC PERFORMANCE

 $_{\rm C}^{\rm O}$

- Select D⁰ candidate control sample with mass cut ($\pm 0.5 \text{ MeV/c}^2$)
- π and K are kinematically identified
- calculate selection efficiency and mis-id
- Correct for combinatorial background (avg. 6%) with sideband method.

RICH2004, Playa del Carmen, Nov 30-Dec 6, 2004

20/24

Jochen Schwiening, SLAC