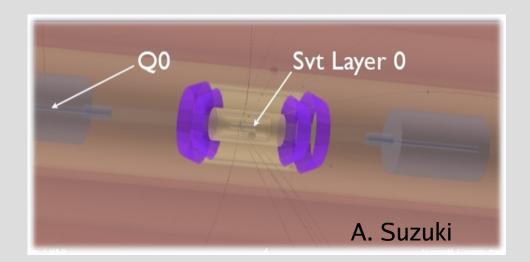
Summary of fast simulation

Matteo Rama INFN Frascati for the fast simulation WG

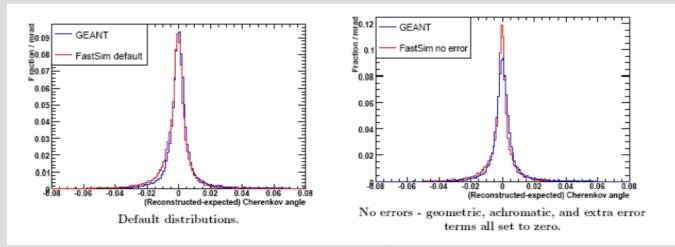
SuperB computing workshop Frascati, 17 December 08

The goals before the start of the meeting


Workshop Goals

- Feedback from physics and users
 - What is needed to make fastsim more useful?
- Coordination with Full Sim
 - Geometry and material description
 - Background frame overlay
- Shower modeling improvements
 - Shower parameterization, fluctuation modeling
 - Detector response to shower
- Particle ID
 - Missing information (dE/dx, lfr timing?)
 - Selectors for FastSim

Brown


FastSim tutorial

- Led by D. Brown on Monday afternoon, based on FastSim V0.0.1
- Interactive: step by step, with attendants following live instructions.
- From release setup to simulation of B->D*K decays in a tunable <u>SuperB-like environment</u>.
- Use of event display
- Positive experience. Another one at the Feb '09 meeting?

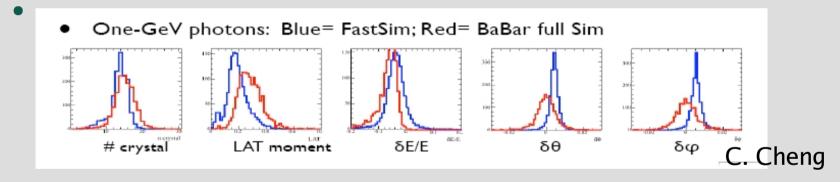
Particle identification

- DIRC:
 - FastSim vs. Full Sim agreement significantly improved

B.Meadows,D. Aston, R. Andreassen

 Simulation makes use of BaBar 'RingDictionary'.
Possible to 'scale' it to get a reasonable description of the <u>DIRC SuperB baseline</u>.

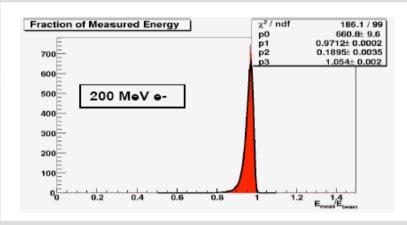
Particle identification


- Other players:
 - Vertex detector, DCH: dE/dx not yet available
 - EMC, IFR: development of shower simulation in progress (see later)
 - SuperB-specific options: work is starting (also related to the Detector Geometry WG)
- Particle ID is (will be) used through PID selectors
 - They exploit all available information to discriminate between particles
 - Their development is crucial for physics analysis (including tagging) and detector optimization.
 - <u>A team has been formed to develop them.</u> More volunteers are welcome.

Shower modeling

- Big effort to develop an accurate enough description of EM and hadronic showers. Encouraging results with the EM. More difficulties with hadrons (as usual).
- The usual parametrization applies to sampling calorimeter, while our EMC is an absorption calorimeter. We have to invent our way to implement it.

EMC simulation

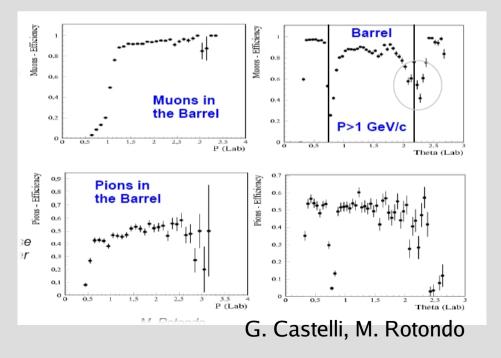

• Use a phenomenological radial dist. of shower to evaluate the average energy deposit on hit crystals. Then fluctuate response of each crystal.

- Still needs to improve the agreement with Full Sim, but tuning not fully exploited yet
- (incomplete) to-do-list: tune longitudinal shower profile, track-cluster matching, cluster merging/splitting,...
- Shower library abandoned

forw. EMC simulation (G4)

- Geant4 simulation of LSO crystals of forw. EMC
- Parametrization of measured energy from $e^{-/\gamma}$

$$F(x) = P_0 e^{-\frac{(x-P_1)^2}{2[P_2(P_3-x)]^2}}$$


S. Germani, C. Cecchi

- Next steps
 - Study of the cluster size and transverse shower development
 - Angular resolution
 - Hadron showers
- How to implement the the parameterisation in the Fast Simulatio code ?

Hadronic shower

IFR simulation

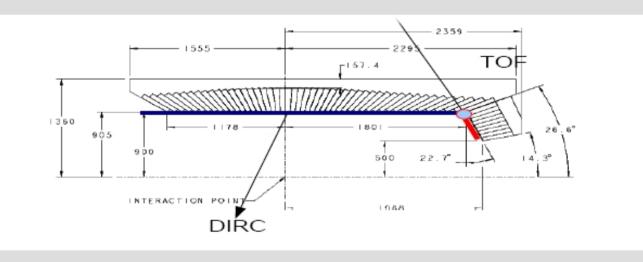
 μ/π separation based on # of traversed iron layers (>9)

 efficiency too optimistic for μ and too high for π.
Need to better simulate the IFR response when a hadronic shower is produced.

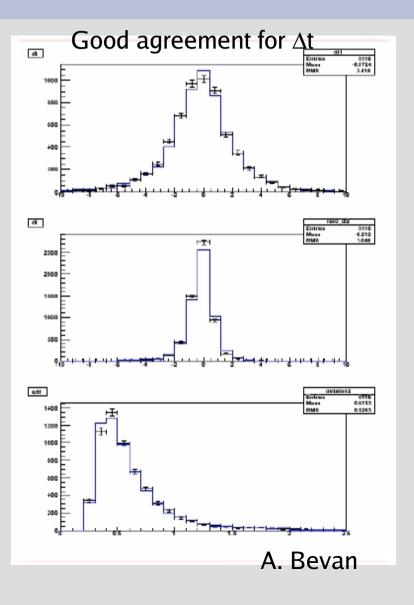
Validation

- A session packed with validation studies
- <u>Contributions also from non-developer users</u>

11:00->13:00 Fast simulation - Validation and optimization studies (Auditorium B. Touschek) Description:


To connect: 1) Call one of the numbers in: http://server10.infn.it/video/index.php?page=telephone_numbers

2) Dial 1550#

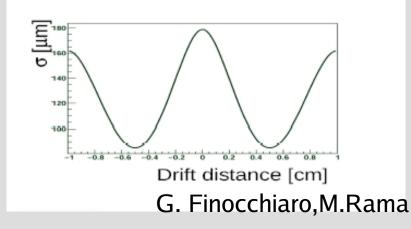

B->rho γ study

• Ultimate goal is to evaluate how much we gain if we have a forward PID L. Burmistrov, A. Stocchi

- Simulation not implemented yet...
- <u>... assume</u> a eff. and misID value and see what happens to the S/B efficiency
- Ex: to have S/B~7 (B->rhoγ/B->K*γ) needs ~1% K/pi misld

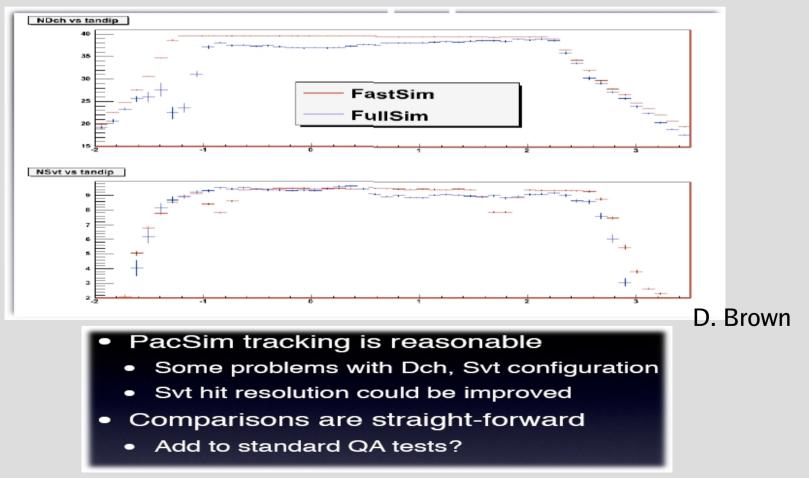
Performance of B->pi+pi-

- Extensive comparison of FastSim and FullSim (BaBar) using B0->pi+pi-
- Good agreement
- Comparison of BaBar and SuperB baseline configuration
- Need PID selectors to use tagging


Fast and sim cmparison with B->D*+K-

Analysis Decay Chain

- В° → D* K └→ D° п └→ К п
- Agreement of basic kinematics quantities is satisfactory
- First step of a more complex analysis
- Verify more variables on FastSim against FullSim
 - Vertexing
 - Neutral Track
 - etc
- Understand efficiency discrepancy
- Study various detector configuration


First DCH studies with FastSim using B0->pi+pi-

- Compare ∆E and pt resolution with different DCH configurations
 - Default BaBar 'averaged' Gas+wire ('averaged'=homogeneous Gas+wire 'material')
 - Recomputed 'averaged' material (differences found!)
 - Gas and wires as distinct materials
 - As above, but with 2x # of DCH cells
 - More realistic (space dependent) hit reso function

Tracking validation

• Wide spectrum of validation tests related to track reconstruction. Just one example:

Physics and FastSim

- Identified 7 golden channels for physics and also challenging from the detector point of view. Ex: B->Xsγ, B->tau nu, etc.
- Start from the physics case to see how the detector should (ideally) be
- Work related to activity of the Detector Geometry working group (1st meeting after this session)

PacMC development

- Decay of 'stable' particles:
 - …like K, π, μ. M. Sokolof, G. Simi
 - With the new code we'll have, for example, a kaon which hits the detector and at some point decays to a μ which can interact, too.
- Re-design of PacMC package
 - Core package to go from PacTrk to the 'BtaCandidate' (the object which represents a particle)
 G. Simi

Summary

- Fruitful meeting for FastSim: initial goals have been met
- New activity on PID selectors started
- Still open issues on shower simulation. This is a difficult task which will require additional work and ideas
- First-time major input from users
- In a number of case FastSim is already performing well
- Interesting joint session where we discussed about the relationship between Fast and Full sim concerning detector description and machine bkg simulation. See D. Brown's talk later