SuperB FastSim Status

David Brown, LBNL

SuperB Computing Workshop Frascati 16 December 2008

SuperB FastSim Goals

- Detector optimization studies
 - beampipe, tracker layout, Z=0?, ...
 - forward PID, forwards+backwarg
 - Coordinated by the Geometry ask Force
 - first meeting on Wednesday (Conoc
- Physics reaction dies
 - performer on benchmark channels
 - Moack to detector design
 - high-statistics studies of rare channels
- Really Fast (~100Hz)

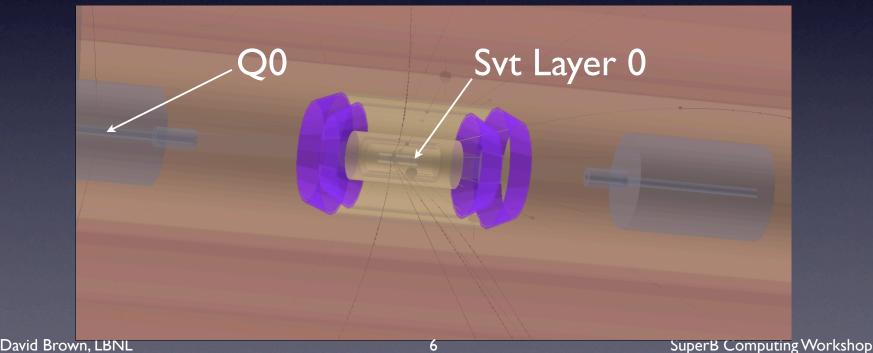
theTDR

SuperB FastSim Design

- Simplify detector element description
 - cylinders, rings, cones, ...
- Fully model particle passage through detector
 - Energy loss, multiple scattering, interactions, showering...
- Parameterize detector response
 - track hit resolution, cluster shape, Cherenkov photon resolution, ...
- 'Reconstruct' tracks, clusters, rings, ...
 - Model hit overlaps, cluster splitting, ...(eventually)
- Result compatible with BaBar analysis tools
 - Vertexing, tagging, PID, BtuTuple, ...

David Brown, LBNL

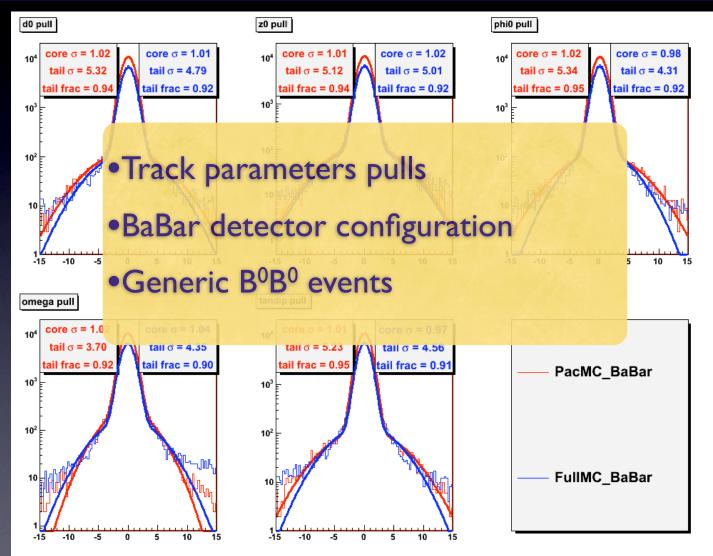
Progress since Elba


- Simulation of neutral particles
- Simulation of outer detector (coil+IFR)
- Add ring and cone geometries
- Tuning of energy loss, discrete interactions
- EM and hadronic ster Rapidodeling prototypes
- Tuning and refinement of detector response
 - Dirc, Emc, Svt, Dch
- 3-D Event Display
- XML-based configuration description
- Release System prototype
- Code cleanup and restructuring

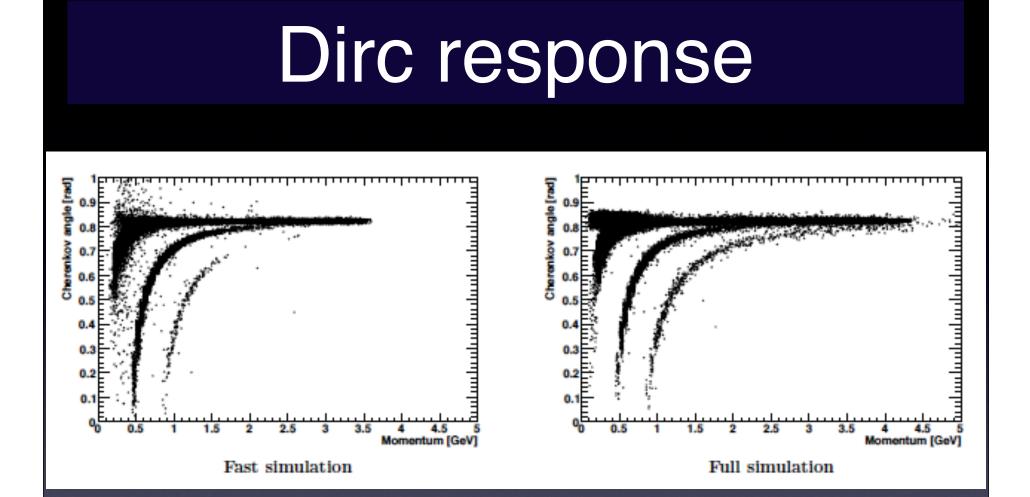
Detector Material Simulation

- Material effects are computed per-element
 - double-Gaussian scattering and energy loss
 - tuned by comparing with G4 (BaBar full sim)
- Interaction probabilities computed per-element
 - EM (Had) showers for e, γ (K_L, ...) in 'thick' materials
 - γ conversion, e brems, etc. in 'thin' materials
- True particle trajectory in detector recorded
- Interactions recorded as discrete SimHits
 - Energy loss, direction change, effect, daughters, ...

PacDisplay (Aritoki Suzuki)

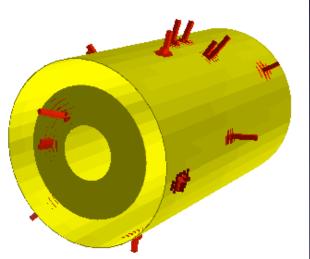

- Module in PacMC produces output root file
- Viewer macro runs in a root (5.20) session
- OpenGL graphics (zoom+move, transparency, cutouts, camera+lighting control, selection,...)

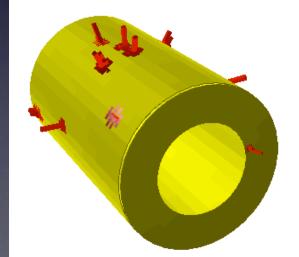
Tracking Simulation


- Multiple measurement types supported
 - double-sided Si strips, Si pixels, wires, ...
 - Measurements can be associated to any geometry
 - cylinder, cone, ring, ...
- Hit positions smeared by an analytic function
 - double-Gaussian for Svt, 'T2D' function for Dch,...
- Electronic Inefficiency, geometric overlaps and gaps modeled statistically
 - EG Svt ribs modeled as thick CF with large gaps

Tracking Response

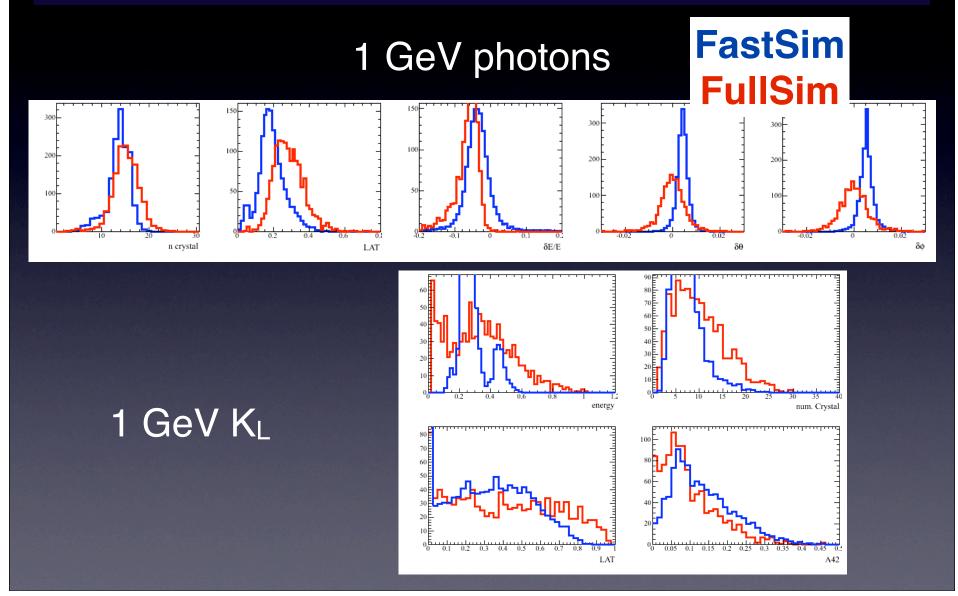
Dirc Simulation (Rolf Andreassen)


- Seed rings on true position, direction
- Generate photons according to ring dictionary
- Smear Θ_C with reconstructed track angle error
- Dispersion, QE configurable



Emc Simulation (Chih-hsiang Cheng)

- Parameterized clusters based on energy deposition on a grid
- Resolution and transverse shape parameterized by standard functions
 - configurable parameters
 - separate forward, barrel and backward responses


Ш

David Brown, LBNL

EMC Response

Ifr Simulation (Marcello Rotondo, Giuliano Castelli)

- Outer-detector is modeled as 0-Field
 - straight-line trajectories
- (muon) hits are reconstructed as 2-D clusters
- Fit to hits gives chisquared
- muon response in reasonable agreement with fullsim

IFR Response

FastSim configuration

- XML detector description (I. Gaponenko)
 - Describes element geometry, material, and measurement parameters
 - Elements live in Volumes which can have their own properties
 - Configuration files can be included in other configuration files
 - Multiple files can processed, overwriting previous parameters
- Material composition
 - Uses BaBar text-based structure

Si_SuperB.xml

```
<?xml version="1.0" encoding="UTF-8" ?>
<edml>
<included>
<volume name="Si Tracking Region">
<cyl name="Beampipe" id="0" zmin="-282" zmax="356" radius="1.05" thick="0.0911"
mat="SB-BPipe" />
<cyl name="SvtMaps" id="0" zmin="-3.5" zmax="6.5" radius="1.15" thick="0.005"
mat="svt-Silicon" meas="SiMaps" overlap="0.01" />
<cyl name="SvtMapsSupport" id="0" zmin="-3.5" zmax="6.5" radius="1.21" thick="0.112"
mat="SB-MapsSupport" />
<cyl name="SvtMaps" id="1" zmin="-3.5" zmax="6.5" radius="1.27" thick="0.005"
mat="svt-Silicon" meas="SiMaps" overlap="0.01" />
<cyl name="SvtMaps" id="1" zmin="-3.5" zmax="6.5" radius="1.27" thick="0.005"
mat="svt-Silicon" meas="SiMaps" overlap="0.01" />
<cyl name="SvtMaps" id="1" zmin="-3.5" zmax="6.5" radius="1.27" thick="0.005"
```

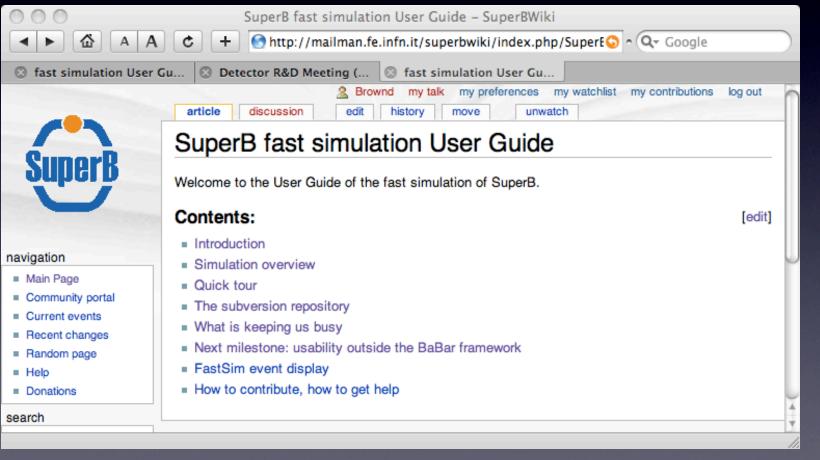
Materialslist.data

SB-MapsSupport 1.738 0.0 0.0 +5 0.554 svt-CFiber 1 0.17 svt-Aluminum 1 0.128 svt-Epoxy 1 0.09 svt-Kapton 1 0.058 pep-H 20 1 -10 -20 -30 20.0 1.0 solid

DircConfig.xml

. . .

. . .


<param name="WindowWidth" type="float"> 0.025 </param>
<param name="BkgWindow" type="float"> 0.02 </param>
<param name="QuantumEfficiency" type="float"> 1.000 </param>
<param name="AchromConstant" type="float"> 0.0042 </param>

FastSim Release System

- Based on Subversion code repository
 - next-generation CVS
- Use BaBar build system (gmake)
 - SCONS-base build system under study
- Release defined as a directory in subversion
 - ie Releases/FastSim/V0.0.1
 - contains package tags, build logs, test results, ...
 - Subversion commit records are the log
- ReleaseTools scripts support release system

Documentation (Wiki)

Actively support by developers and users is essential

Development in Progress

- Particle decays (K[±],π[±],μ[±],...) (U. Cin., UMD)
 - Must follow through detector to find decay point
 - Neutral (K_s,Λ) are decayed by generator
- Hit overlap simulation (D. Roberts)
 - Changes track resolution, tails, hit assignment
 - Use same tool to model machine backgrounds?
 - Useful for calorimeter, PID too?
- Subsystem response tuning
- Code cleanup
 - Remove conditions access, ...

Workshop Goals

- Feedback from physics and users
 - What is needed to make fastsim more useful?
- Coordination with Full Sim
 - Geometry and material description
 - Background frame overlay
- Shower modeling improvements
 - Shower parameterization, fluctuation modeling
 - Detector response to shower
- Particle ID
 - Missing information (dE/dx, lfr timing?)
 - Selectors for FastSim

Conclusions

- SuperB FastSim V0.0.1 is ready
 - Used in yesterday's tutorial
 - Interesting studies already possible
- Fastsim is under rapid development
 - Hope to make progress on key issues here
 - Aim for full functionality by April Physics Workshop
- Users contributions are welcome!
 - Your feedback is crucial
 - Contact Matteo or I if you want to participate