
Bruno: present
status and future

perspectives

Andrea Di Simone
INFN Roma2

2

A
nd

re
a

D
i S

im
on

e
-

IN
F

N
 R

om
a2

20
08

12
16

OutlineOutline

➢ Short introduction to G4

➢ SuperB G4 Simulation:
➢ Present status

➢ Main missing functionalities
➢ MC truth machinery
➢ Physics lists
➢ Physics regions
➢ User interface

➢ Proposals

3

A
nd

re
a

D
i S

im
on

e
-

IN
F

N
 R

om
a2

20
08

12
16

Why not using G3?Why not using G3?

➢ Geant3 was a detector simulation program
developed for the LEP era
➢ Fortran, ZEBRA

➢ Electromagnetic physics directly from EGS

➢ Hadronic physics added as an afterthought (and always by interfacing with
external packages)

➢ Powerful but simplistic geometry model

➢ Physics processes very often limited to LEP energy range (100 GeV)

➢ (Painfully) debugged with the help and the collaboration of 100s of physicist
from all over the world

➢ LHC detectors need powerful simulation tools for
the next 20 years
➢ reliability, extensibility, maintainability, openness

➢ good physics, with the possibility of extending

4

A
nd

re
a

D
i S

im
on

e
-

IN
F

N
 R

om
a2

20
08

12
16

What's newWhat's new

➢ Geant3

➢ The geometry model is limited to a
pre-defined set of basic shapes.
Adding a new shape requires
changing the code of several (~20)
routines. Interface to CAD systems
in not possible

➢ Tracking is the result of several
iterations (by different people),
resulting in difficult to maintain
(and to understand) code.

➢ EM physics is built in, but several
processes are missing and their
implementation would be very hard

➢ Hadronic physics is implemented
via external (and obsolete)
packages. Modifications require
the author’s intervention

➢ Geant4

➢ The geometry has been based since
the beginning on a CAD-oriented
model. The introduction of a new
shape does not influence tracking

➢ Tracking has been made
independent from geometrical
navigation, tracking in
electromagnetic fields (or any field)
has been improved

➢ EM and hadronic physics
implemented in terms of processes.
A process can be easily added or
modified by the user and assigned to
the relevant particles with no change
in the tracking. The cut philosophy
has been changed so as to make
result less dependent on the cuts
used for the simulation. Framework
for physics parameterisation in place

5

A
nd

re
a

D
i S

im
on

e
-

IN
F

N
 R

om
a2

20
08

12
16

Architectural overviewArchitectural overview

6

A
nd

re
a

D
i S

im
on

e
-

IN
F

N
 R

om
a2

20
08

12
16

G4RunManagerG4RunManager

➢ G4RunManager is the root class of the Geant4 hierarchy

➢ It controls the main flow of the program:

➢ Constructs the manager classes of Geant4 (in its constructor)

➢ Manages initialization procedures including methods in the user
initialization classes (in its method Initialize())

➢ Manages event loops (in its method BeamOn())

➢ Terminates manager classes in Geant4 (in its destructor)

➢ The method Initialize() takes care of building the detector
geometry (as specified by the user), the physics processes
and of setting all parameters needed for G4 to run

➢ The detector setup and the physics processes and cuts
cannot be modified during a run. The G4RunManager must
be notified if one of these were to change, before a new run

7

A
nd

re
a

D
i S

im
on

e
-

IN
F

N
 R

om
a2

20
08

12
16

G4RunManager: initG4RunManager: init

main Run manager
user detector
construction

user physics
list

1: initialize
2: construct

3: material construction

4: geometry construction
5: world volume

6: construct

8: set cuts

8

A
nd

re
a

D
i S

im
on

e
-

IN
F

N
 R

om
a2

20
08

12
16

G4RunManager: beamOnG4RunManager: beamOn

main Run Manager
Geometry
manager

Event
generator

Event
manager

1: Beam On
2: close

3: generate one event

5: open

4: process one event

9

A
nd

re
a

D
i S

im
on

e
-

IN
F

N
 R

om
a2

20
08

12
16

Event loopEvent loop

Event
manger

Stacking
manager

Tracking
manager

Stepping
manager

1: pop

2: process one track
3: Stepping

5: secondaries

6: push

4: generate hits

User sensitive
detector

10

A
nd

re
a

D
i S

im
on

e
-

IN
F

N
 R

om
a2

20
08

12
16

Interaction with user codeInteraction with user code

➢ User can instruct G4 to run some specific code at
given points of the simulation

➢ Code must be wrapped into a UserAction

➢ Several types of user actions, depending on what you
want do to with your code
➢ RunAction allows you to specify code to be run at

beginning and end of a run

➢ EventAction: executes user code at beginning and end of
event

➢ TrackingAction: each time a track is created or killed, your
code will be run

➢ SteppingAction: runs user code at EACH STEP. Critical for
CPU performance

11

A
nd

re
a

D
i S

im
on

e
-

IN
F

N
 R

om
a2

20
08

12
16

Production thresholdProduction threshold

➢ One of the most critical parameters of any G4 simulation.

➢ Secondaries below threshold will not be tracked by G4.

➢ Instead, they will be killed, and their energy given back to
the simulation as a local deposit.

➢ It has a big impact on simulation time per event

➢ Should be as big as possible

➢ On the other hand, a very big value would lead to
incorrect energy response by detectors (i.e. calorimeters)

➢ Also a very small value could give unphysical results

➢ A balance must be found.

➢ One typically tries several cut values, looking for a region where
physical observables (like visible energy in calorimeters) do not
depend too much on the actual value of the cut.

12

A
nd

re
a

D
i S

im
on

e
-

IN
F

N
 R

om
a2

20
08

12
16

Production threshold (2)Production threshold (2)

Set energy
cut at Ar
value;

Set energy cut
at Pb value,
killing also
secondaries in
Ar...

Geant3Geant3

DCUTE = 2 MeV

DCUTE = 455 keV

Pb LAr

Pb
Liquid

Ar

Liquid
ArPb

500 MeV incident
proton

(e-) range cut: 1.5 mm

455 keV in liquid Ar

2 MeV in Pb

Geant4Geant4

➢ In G4, all production thresholds for secondaries
are given in range, not in energy

13

A
nd

re
a

D
i S

im
on

e
-

IN
F

N
 R

om
a2

20
08

12
16

Production threshold (3)Production threshold (3)

➢ One in principle can set different production cuts for
individual volumes

➢ More often, a default cut is used for all the simulation,
and special cuts are applied just to specific groups of
volumes (called physics regions)

➢ A process can still decide to produce secondary particles
even below the recommended production threshold
➢ if, by checking the range of the secondary produced against

quantities like safety (~the distance to the next boundary), it
turns out that the particle, even below threshold, might reach a
sensitive part of the detector

➢ when mass-to-energy conversion can occur, to conserve the
energy. For instance, in gamma conversion, the positron is
always produced, even at 0 energy, for further annihilation

14

A
nd

re
a

D
i S

im
on

e
-

IN
F

N
 R

om
a2

20
08

12
16

Physics processesPhysics processes

➢ A class G4VProcess is provided as the base class for all physics
processes

➢ All physics processes are described by using three (virtual)
methods:
➢ AtRestDoIt()

➢ AlongStepDoIt()

➢ PostStepDoIt()

➢ The following classes are then used as base classes for simple
processes
➢ G4VAtRestProcess Process with AtRestDoIt() only

➢ G4VContinuousProcess Process with AlongStepDoIt only

➢ G4VDiscreteProcess Process with PostStepDoIt

➢ 4 additional classes (such as G4VContinuousDiscreteProcess) are
provided for complex processes

15

A
nd

re
a

D
i S

im
on

e
-

IN
F

N
 R

om
a2

20
08

12
16

Physics processesPhysics processes

16

A
nd

re
a

D
i S

im
on

e
-

IN
F

N
 R

om
a2

20
08

12
16

Hits/digitsHits/digits

➢ Sensitive volumes in the simulation must be associated to a
SensitiveDetector

➢ At each step, G4 checks whether the volume the particle is in
is sensitive, and calls the ProcessHits method of the
corresponding SensitiveDetector.

➢ Any Sensitive Detector has three major methods:
➢ Initialize(): it is invoked at the beginning of each event.

➢ ProcessHits(): it is invoked by G4SteppingManager when a step
takes place in the G4LogicalVolume which point to this sensitive
detector. The first argument is a G4Step object for the current step.
Here, one or more G4VHit objects should be constructed if the
current step has to be registered

➢ EndOfEvent(): This method is invoked at the end of each event. For
example, here associate hits collections to the corresponding hit
collection

17

A
nd

re
a

D
i S

im
on

e
-

IN
F

N
 R

om
a2

20
08

12
16

Hits/digitsHits/digits

➢ Each time ProcessHits() is called, the SD will generate a Hit

➢ A Hit is a snapshot of a physical interaction of a track in a sensitive
region of the detector
➢ One can store various informations associated with a G4Step object, like:

➢ Position and time of the step
➢ momentum of the track
➢ energy deposition of the step
➢ geometrical information

➢ In general, hits represent the physics of the detection mechanism,
while electronics simulation is taken into account when creating
digits

➢ Example: muon crossing scintillator slab. Will do many steps,
hence produce many hits. The PM however would produce only
one signal of a given shape
➢ Digitization should group together the hits and create the digit

➢ This is where detector experts are really needed

18

A
nd

re
a

D
i S

im
on

e
-

IN
F

N
 R

om
a2

20
08

12
16

Bruno simulation: present statusBruno simulation: present status

➢ Simulation steered by C++ code (Bruno.cc)

➢ Possibility to use gdml as source of geometry

➢ Possibility to choose between two custom
physics lists

➢ Needs recompilation

➢ Hit recording in place, by means of a
UserAction-based mechanism
(AnalysisManager)

➢ No digits yet

19

A
nd

re
a

D
i S

im
on

e
-

IN
F

N
 R

om
a2

20
08

12
16

What is missing: MCTruthWhat is missing: MCTruth

➢ Hits (digits) take into account detector response

➢ They are the input for reconstruction

➢ Their representation in memory could in principle be identical
to the one used for real data

➢ Of course, when running simulation, you know many
more things

➢ Particle type, name of the process which originated it, exact
position of the vertex where it was created, etc.

➢ A HUGE amount of information, which needs to be somehow
selected and stored on disk
➢ Could include it in hits. Bad for many reasons. For example: you can

have many hits from the same true particle and don't want to replicate
info. Or, you can have a true particle not giving any hit and still want to
record it

➢ Better to use a separate class

20

A
nd

re
a

D
i S

im
on

e
-

IN
F

N
 R

om
a2

20
08

12
16

MCTruth: proposalMCTruth: proposal

➢ It can be handled using a stepping action
➢ A list of interesting processes, particles, energy

thresholds is provided for concerned volumes

➢ At each step, check whether we are in one of the
“truthable” volumes, check the particle type, the process
which generated it, its energy

➢ If all OK, store info

➢ It should not be too difficult to implement
➢ Change in configuration must not need recompilation

➢ Use external config files

➢ Trick is to optimize the code as much as possible
➢ it will be executed AT EACH STEP

21

A
nd

re
a

D
i S

im
on

e
-

IN
F

N
 R

om
a2

20
08

12
16

Physics listsPhysics lists

➢ In G4, a process manager is associated to each particle
➢ “knows” which processes the particle can undergo (and in which order)

➢ The code which “fills” the particle managers for all the particles is called
Physics List
➢ Writing a physics list is a painful exercise

➢ And dangerous too, unless you are a real expert of the underlying G4 physics
models

➢ G4 provides a set of recommended physics lists, which are used as the
baseline for most experiments
➢ Validated by experiments

➢ Maintained by G4 developers

➢ Unless one wants to do some very specific tests, it is in general a good
idea to try those before writing one's own list

➢ Default physics lists distributed with G4 release.
➢ We already have them, it's just a matter of telling Bruno to use them

22

A
nd

re
a

D
i S

im
on

e
-

IN
F

N
 R

om
a2

20
08

12
16

Physics regionsPhysics regions

➢ Aim is not to waste time in tracking very low range
particles

➢ Production cuts can be defined up to a volume-by-
volume basis by using regions

➢ They associate to a volume (and all its children) a set of
production cuts

➢ Presently, regions are created during geometry
definition (if not using gdml)

➢ Cuts are associated to regions in the physics list

➢ Could be a good idea to do region creation and cut
definition in one single step, decoupled (from the point of
view of the code) from both geometry and physics

➢ Implemented a working prototype: see following slides

23

A
nd

re
a

D
i S

im
on

e
-

IN
F

N
 R

om
a2

20
08

12
16

User InterfaceUser Interface

➢ Classical way of interacting with simulation program is by means
of macro files

➢ Doesn't scale well with growing size and complexity of the
program

➢ Geant4 implements, in latest versions, a new python interface

➢ Uses boost for python binding generation

➢ Not G4 depending: can be used by any C++ code

➢ Exposing to python a subset of core classes and methods

➢ Easy to add user classes too

➢ Advantages:

➢ No need to recompile each time you change an option

➢ Fully-fledged scripting language

➢ Flexibility, maintainability

➢ User friendliness

24

A
nd

re
a

D
i S

im
on

e
-

IN
F

N
 R

om
a2

20
08

12
16

Prototype of “pythonized” BrunoPrototype of “pythonized” Bruno

➢ As a proof of concept, tried to reimplement Bruno.cc in python

➢ Design can be optimized, but for the time being it splits the
program in two parts

➢ BrunoEng.py: actual manipulation of high level G4 classes (like the
run manager) which must be protected from the user

➢ BrunoConf.py: container for user options, to be passed to the Engine

➢ User writes his/her own python script, using a BrunoConf to wrap
options and feeding it to a BrunoEng

➢ We exposed AnalysisManager and all the UserActions to
python too

➢ When doing this excercise, we found that the physics list
selection comes for free, as a bonus...

➢ In any case, Bruno.cc can now choose between 3 standard physics
lists at run time, using a command line switch

25

A
nd

re
a

D
i S

im
on

e
-

IN
F

N
 R

om
a2

20
08

12
16

pyBrunopyBruno

testRun.py

➢ Example run

➢ User edits a py file and
executes it

➢ Under the hood, pyBruno
does all the work

➢ See next slide...

26

A
nd

re
a

D
i S

im
on

e
-

IN
F

N
 R

om
a2

20
08

12
16

pyBruno: under the hoodpyBruno: under the hood

➢ Code snippets from BrunoConf
and BrunoEng

➢ Presently, BrunoEng is doing
the same things as Bruno.cc

➢ Apart from minor things (such as
command line parsing, not
needed anyway)

➢ Primary generator is there, but a
way to configure it still to be
implemented

➢ Note the hook for regions...

BrunoConf.py

BrunoEng.py
(verbosity + steering)

BrunoEng.py
(geo + phyis list)

27

A
nd

re
a

D
i S

im
on

e
-

IN
F

N
 R

om
a2

20
08

12
16

pyBruno: Physics RegionspyBruno: Physics Regions

➢ BrunoRegionManager C++ class manages region definition, cut
setting, association with logical volumes

➢ This can be used also by Bruno.cc

➢ Relevant methods exposed to python for usage by BrunoEng

➢ A “buffer” class in python gathers all user info about regions

➢ BrunoEng loops over these python regions and creates the “real” ones
using the BrunoRegionManager

➢ User is protected from the G4 kernel (and viceversa)

➢ Freedom to add regions or modify existing ones until the very last minute
from top python script

➢ Things look pretty good, and prototype works (see next slide)

➢ A python module BrunoRegions.py was created to store regions for
default productions

➢ Only issue now is understand to which volumes we want to associate
regions

28

A
nd

re
a

D
i S

im
on

e
-

IN
F

N
 R

om
a2

20
08

12
16

pyBruno: Physics Regions (2)pyBruno: Physics Regions (2)

➢ Cut definition is done in the python module

➢ Only “official” cuts should go here

➢ No user interaction

➢ User can add/modify things from his/her top script (see next slide)

BrunoRegions.py

BrunoEng.py

29

A
nd

re
a

D
i S

im
on

e
-

IN
F

N
 R

om
a2

20
08

12
16

PyBruno: Physics Regions (3)PyBruno: Physics Regions (3)

➢ Example of region customization from the user's side

➢ Log showing that the regions are actually being used by G4

testRun.py

30

A
nd

re
a

D
i S

im
on

e
-

IN
F

N
 R

om
a2

20
08

12
16

pyBruno: open issuespyBruno: open issues

➢ Prototype is working

➢ Geometry is build

➢ Physics list is chosen at run time

➢ Physics regions can be defined and modified at runtime
➢ A default list is provided

➢ Event loop is carried on as expected

➢ Some features missing, but it shouldn't take too long to
be able to replace Bruno.cc completely

➢ All you have seen here was done in ~2 days of work

➢ My proposal is that we work in this direction

➢ In the meantime, take care of backporting all new
functionalities to Bruno.cc

31

A
nd

re
a

D
i S

im
on

e
-

IN
F

N
 R

om
a2

20
08

12
16

pyBruno: open issuespyBruno: open issues

➢ Python is not the solution to everything:
➢ Good for code to be executed once per run (i.e.

configuration)

➢ Critical code (i.e. executed more often) should still
be coded in C++ for performance reasons, but
some parts can be exposed to python
➢ For example a SteppingAction MUST be written in C++

(note: it IS possible to implement it in python, with no C+
+ at all)

➢ However, the configuration part can be exposed to the
python layer

➢ Immediate application for example to the MCTruth
problem

32

A
nd

re
a

D
i S

im
on

e
-

IN
F

N
 R

om
a2

20
08

12
16

ConclusionsConclusions

➢ Three main missing functionlities
➢ MCTruth

➢ Handling of regions

➢ User interface

➢ At least one (the physics list setting) is solved
almost for free if we switch to python interface

➢ The rest needs some coding, but it should be
possible to implement in a fairly short timescale

➢ Longer term targets may include:
➢ use of parallel geometries for scoring volumes

➢ Implementation of proper digitization

	Pagina 1
	Pagina 2
	Pagina 3
	Pagina 4
	Pagina 5
	Pagina 6
	Pagina 7
	Pagina 8
	Pagina 9
	Pagina 10
	Pagina 11
	Pagina 12
	Pagina 13
	Pagina 14
	Pagina 15
	Pagina 16
	Pagina 17
	Pagina 18
	Pagina 19
	Pagina 20
	Pagina 21
	Pagina 22
	Pagina 23
	Pagina 24
	Pagina 25
	Pagina 26
	Pagina 27
	Pagina 28
	Pagina 29
	Pagina 30
	Pagina 31
	Pagina 32

