Contribution to the discussion: "Extreme Flavour"

P. Colangelo and F. De Fazio

INFN - Sezione di Bari

Sept. 3, 2014

1 Preamble

We consider a high luminosity hadron machine with configuration of the experiment similar to LHCb, and focus on exclusive B and B_s rare processes with charged leptons and light hadrons (including η , η') in the final state. Progress in measurements will be achieved before the construction of such a machine, at SuperBelle and at the new LHC runs: this should be taken into account in the discussion. Other interesting processes involve b-baryons and B_c .

2 Rare FCNC b-meson decays: modes and observables

2.1 CKM enhanced b decays

- $B \to K^*(K\pi)\ell^+\ell^-$ and $B_s \to \phi(K\bar{K})\ell^+\ell^-$
 - $-q^2$, F_L and AFB distributions
 - full angular distribution
 - role of the scalar $K\pi$ contribution
 - $-e \mu$ universality
 - $-\tau$ leptons (is polarization measurable?)
 - $-B_s/B_d$ to reduce the hadron uncertainty
- $B \to K\ell^+\ell^-$ and $B_s \to (\eta, \eta')\ell^+\ell^-$
 - $-q^2$ distribution
 - $-e-\mu$ universality
 - $-\tau$ leptons

- B_s/B_d to reduce the hadron uncertainty
- $B_s \to f_0(980)(\pi^+\pi^-)\ell^+\ell^-$
 - $-q^2$ distributions
 - $-e-\mu$ universality
 - $-\tau$ leptons

2.2 CKM suppressed b decays and V_{td}/V_{ts}

- $B \to \pi \ell^+ \ell^-$ and $B_s \to K \ell^+ \ell^-$
 - $-q^2$ distribution
 - $-e-\mu$ universality
 - $-B_s/B_d$
 - $-V_{td}/V_{ts}$ from $(B \to \pi)/(B \to K)$
- $B \to \rho(\pi\pi)\ell^+\ell^-$ and $B_s \to K^*(K\pi)\ell^+\ell^-$
 - $-q^2$ and AFB distributions
 - angular distributions
 - $-e-\mu$ universality
 - $-B_s/B_d$
 - $-V_{td}/V_{ts}$ from $(B \to \rho)/(B \to K^*)$ and $(B_s \to K^*)/(B_s \to \phi)$

3 FCNC b-baryon decays

- $\Lambda_b \to \Lambda \ell^+ \ell^-$
 - $-q^2$ distributions
 - angular distributions
 - $-e-\mu$ universality
 - $-\tau$ leptons (?)
- Are Ξ_b decay modes accessible?

decay mode	observable	2014	uncertainty 2014	20XX
$B \to K^*(K\pi)\ell^+\ell^-$	BR	√	$\simeq 10\%$	
	q^2 distribution	✓		
	F_L distribution	✓		
	AFB distribution	✓		
	angular distributions	✓		
$B_s \to \phi(K\bar{K})\ell^+\ell^-$	BR	(v)		
	q^2 distribution	(v)		
	F_L distribution			
	AFB distribution			
	angular distributions			
$B \to K\ell^+\ell^-$	BR	√	$\simeq 10\%$	
	q^2 distribution	✓		
$B_s \to (\eta, \eta')\ell^+\ell^-$	BR			
	q^2 distribution			
$B_s \to f_0(\pi^+\pi^-)\ell^+\ell^-$	BR			
	q^2 distribution			
$B \to \pi \ell^+ \ell^-$	BR			
	q^2 distribution			
$B_s \to K \ell^+ \ell^-$	BR			
	q^2 distribution			
$B \to \rho(\pi\pi)\ell^+\ell^-$	BR			
	q^2 distribution			
	AFB distribution			
	angular distributions			
$B_s \to K^*(K\pi)\ell^+\ell^-$	BR			
	q^2 distribution			
	AFB distribution			
	angular distributions			

Table 1: 2014 status and projections

4 FCNC $c \rightarrow u$ transition

The investigation of the $c \to u$ transition naturally involves D mesons, but the LD contributions are usually dominant in this system and difficult to control. Examples are $D \to (\pi, \rho) \ell^+ \ell^-$ and $D_s \to (K, K^*) \ell^+ \ell^-$. B_c decays can be useful for such investigations; the actual possibility of measuring such modes needs to be studied. Main processes: $B_c \to B^{(*)} \ell^+ \ell^-$ (q^2 distribution, $e - \mu$ universality) and $B_c \to B^* \gamma$.