Confinement and extreme conditions in lattice QCD

Leonardo Cosmai INFN Bari

"Supermassive Computations in Theoretical Physics"

February 11-13, 2015, Fondazione Bruno Kessler, Trento (Italy)

Topics

- QCD phase diagram at finite temperature and quark density
(Paolo Cea, L.C., Alessandro Papa)
- Flux tubes in the QCD vacuum
(Paolo Cea, L.C., Francesca Cuteri, Alessandro Papa)
- QCD in external background fields (Paolo Cea, L.C.)

- QCD phase diagram at finite temperature and quark density

(Paolo Cea, L.C., Alessandro Papa)

Q The study of the QCD phase diagram has become a topic of wide interest in recent years.

Q A transition or rapid crossover is thought to exist from a low temperature hadronic phase to a high temperature quark-gluon plasma phase.

Q The determination of the QCD (pseudo)critical line (exact location and nature of the transition) is related to many important theoretical and phenomenological issues.

For example:
the physics of the early universe (high T and low baryon density region)
\checkmark the physics of the interior of some compact astrophysical objects (low T and high baryon density region)

Q The QCD (pseudo)critical line can be parameterized by a lowest order Taylor expansion in the baryon chemical potential:

$$
\frac{T\left(\mu_{B}\right)}{T_{c}(0)}=1-\kappa\left(\frac{\mu_{B}}{T\left(\mu_{B}\right)}\right)^{2}
$$

Q Lattice QCD can be used to locate the QCD (pseudo)critical line.
BUT the "sign problem" prevents us to do simulations at real nonzero baryon chemical potential.

Q Possible way out: analytic continuation from an imaginary chemical potential (other methods: reweighting from the ensemble at $\mu_{B}=0$, the Taylor expansion method, the canonical approach, the density of states method).

- Estimate of the (pseudo)critical line by the method of analytic continuation of (2+1) flavor QCD using the HISQ/tree action.

Lattice setup and numerical simulation

- Highly improved staggered quark action with tree level improved Symanzik gauge action (HISQ/tree) with 2+1 flavors as implemented in the MILC code (http://www.physics.utah.edu/~detar/milc/).

Calculations on a line of constant physics (*): as the gauge coupling is increased the bare quark masses have been adjusted such that the values of hadron masses in physical units (evaluated at zero temperature) stay approximately constant. The light-quark mass has been fixed at $m_{l}=m_{s} / 20 . \quad\left(M_{\pi}=160 \mathrm{MeV}\right)$
$\left(^{*}\right)$ as determined in A. Bazavov et al (HotQCD Collaboration), PRD 85, 054503 (2012))
O In the present study we assign the same quark chemical potential to the three quark species: $\quad \mu_{l}=\mu_{s} \equiv \mu=\mu_{B} / 3$

Q To perform numerical simulations we used the MILC code suitably modified in order to introduce an imaginary quark chemical potential $\mu=\mu_{B} / 3$.
That has been done by multiplying all forward and backward temporal links entering the discretized Dirac operator by $\exp (i a \mu)$ and $\exp (-i a \mu)$, respectively.

Q All simulations make use of the rational hybrid Monte Carlo (RHMC) algorithm. (The length of each RHMC trajectory has been set to 1.0 in molecular dynamics time units.)

Strong scaling test (MILC code with imaginary quark chemical potential) strong scaling test $\left(32^{3} \times 8\right.$ lattice)

Strong scaling test (MILC code with chromomagnetic background field)
strong scaling test $48^{3} \times 12$ lattice

Numerical results

$$
T_{c}(\mu)=\frac{1}{a\left(\beta_{c}(\mu)\right) L_{t}}
$$

The (pseudo)critical line $\beta_{c}\left(\mu^{2}\right)$ has been determined as the value for which the disconnected susceptibility of the light quark chiral condensate exhibits a peak

To localize the peak, a Lorentzian fit has been used:

$$
\frac{a_{1}}{1+a_{2}\left(\beta-\beta_{c}\right)^{2}}
$$

		\cdots
Lattice	$\mu /(\pi T)$	β_{c}
$16^{3} \times 6$	0.	$6.102(8)$
	$0.15 i$	$6.147(10)$
	$0.2 i$	$6.171(12)$
	$0.25 i$	$6.193(14)$
$24^{3} \times 6$	0.	$6.148(8)(*)$
	$0.2 i$	$6.208(5)$
$32^{3} \times 8$	0.	$6.392(5)$ (*) *
	$0.2 i$	$6.459(9)$

(*) fit to data taken from Table X and Table XI of A.Bazavov et al (HotQCD

Setting the lattice scale

The lattice spacing can be determined using the slope of the static quark-antiquark potential on zero-temperature lattices (we use results of MILC and HotQCD collaborations (*)).

$$
\begin{aligned}
& \left.a(\beta)\right|_{m_{l}=0.05 m_{s}}=r_{1} \frac{c_{0} f(\beta)+c_{2}(10 / \beta) f^{3}(\beta)}{1+d_{2}(10 / \beta) f^{2}(\beta)} \quad \begin{array}{l}
r_{1}=0.3106 \mathrm{fm} \\
c_{0}=44.06 \\
c_{2}=272102 \\
d_{2}=4281
\end{array} \\
& f(\beta)=\left(b_{0}(10 / \beta)\right)^{-b_{1} /\left(2 b_{0}^{2}\right)} \exp \left(-\beta /\left(20 b_{0}\right)\right) \\
& b_{0}, b_{1} \\
& \text { coefficients of the } \\
& \text { universal two-loop } \\
& \text { beta function } \\
& T_{c}(\mu)=\frac{1}{a\left(\beta_{c}(\mu)\right) L_{t}}
\end{aligned}
$$

(*) as discussed in Appendix B of A. Bazavov et al (HotQCD Collaboration), PRD 85, 054503 (2012)

The critical temperature vs. imaginary quark chemical potential

Lattice	$\mu /(\pi T)$	β_{c}	$T_{c}(\mu) / T_{c}(0)$
$16^{3} \times 6$	0.	$6.102(8)$	1.000
	$0.15 i$	$6.147(10)$	$1.045(13)$
	$0.2 i$	$6.171(12)$	$1.070(15)$
	$0.25 i$	$6.193(14)$	$1.093(17)$
$24^{3} \times 6$	0.	$6.148(8)$	1.000
	$0.2 i$	$6.208(5)$	$1.060(10)$
$32^{3} \times 8$	0.	$6.392(5)$	1.000
	$0.2 i$	$6.459(9)$	$1.068(11)$

Linear fit (in μ^{2}) to the data

$$
\frac{T_{c}(\mu)}{T_{c}(0)}=1+R_{q}\left(\frac{i \mu}{\pi T_{c}(\mu)}\right)^{2}
$$

for the $16^{3} \times 6$ lattice:

$$
\begin{aligned}
& R_{q}=-1.63(22) \\
& \chi^{2} / \text { d.o.f. }=0.39
\end{aligned}
$$

curvature of the (pseudo)critical line:

$$
\kappa=-\frac{R_{q}}{\left(9 \pi^{2}\right)}=0.0183(24)
$$

Assuming that linearity still holds on the other lattices:

Comparison with other results for the curvature к

This study P. Cea, L. Cosmai, A. Papa, Phys. Rev. D 89, 074512 (arXiv:1403.0821)
analytic continuation, HISQ/tree action, disconnected chiral susceptibility, $\mu=\mu_{I}=\mu_{s}$

arXiv:1410.5758 C. Bonati, M. D'Elia, M. Mariti, M. Mesiti, F. Negro, F. Sanfilippo, Phys.Rev. D90 (2014) 11, 114025
analytic continuation, stout-smeared staggered quarks, $\boldsymbol{\mu}_{\mathrm{s}}=\mathbf{0}$, chiral condensate, chiral susceptibility
arXiv:1011.3130 O. Kaczmarek, F. Karsch, E. Laermann, C. Miao, S. Mukherjee, P. Petreczky, C. Schmidt, W. Soeldner, and W. Unger, Phys.Rev. D83 (2011) 014504
Taylor expansion, p4-action, chiral susceptibility
arXiv:1102.1356 G. Endrődi, Z. Fodor, S. D. Katz, and K. K. Szabó, JHEP 1104 (2011) 001
Taylor expansion, stout action, chiral condensate
Taylor expansion, stout action, strange quark number susceptibility
arXiv:1012.4694 R. Falcone, E. Laermann, M.P. Lombardo, PoS LATTICE2010 (2010) 183
analytic continuation, p4-action, Polyakov loop
hep-ph/0511094 J. Cleymans, H. Oeschler, K. Redlich, and S. Wheaton, Phys.Rev. C73 (2006) 034905
freeze-out curvature, analysis based on the standard statistical hadronization model
arXiv:1212.2341 F. Becattini, M. Bleicher, Th. Kollegger, T. Schuster, Jan Steinheimer, and Reinhard Stock, Phys.Rev.Lett. 111 (2013) 082302

Estimate of the (pseudo)critical line

From our estimate of the curvature $\kappa=0.018(4)$ and
$T_{c}\left(\mu_{B}\right)=a-b \mu_{B}^{2}$
$a=T_{c}(0)$
$b=\frac{\kappa}{T_{c}(0)}$
$T_{c}(0)=154(9) \mathrm{MeV}$
we get:
$b=0.117(27) \mathrm{GeV}^{-1}$
to be compared with:
$b=0.139(16) \mathrm{GeV}^{-1}$
hep-ph/0511094 J. Cleymans, H. Oeschler, K.
Redlich, and S. Wheaton, Phys.Rev. C73
(2006) 034905

- Flux tubes in the QCD vacuum

(Paolo Cea, L.C., Francesca Cuteri, Alessandro Papa)

Figure: $q \bar{q}$ pair at distance R in the QCD vacuum

$$
\rho_{W}^{\text {conn }}=\frac{\left\langle\operatorname{tr}\left(W L U_{P} L^{\dagger}\right)\right\rangle}{\langle\operatorname{tr}(W)\rangle}-\frac{1}{N} \frac{\left\langle\operatorname{tr}\left(U_{P}\right) \operatorname{tr}(W)\right\rangle}{\langle\operatorname{tr}(W)\rangle}
$$

$\rho_{P}^{\text {conn }}$ $\left\langle\operatorname{tr}\left(P(x) L U_{P} L^{\dagger}\right) \operatorname{tr} P(y)\right\rangle$ $\langle\operatorname{tr}(P(x)) \operatorname{tr}(P(y))\rangle$ $\frac{1}{3} \frac{\left\langle\operatorname{tr}(P(x)) \operatorname{tr}(P(y)) \operatorname{tr}\left(U_{P}\right)\right\rangle}{\langle\operatorname{tr}(P(x)) \operatorname{tr}(P(y))\rangle}$

Clem fit: [J.R.Clem, J.Low.Temp.Phys. 18,427(1975)]

$$
\begin{gathered}
E_{l}\left(x_{t}\right)=\frac{\phi}{2 \pi} \frac{\mu^{2}}{\alpha} \frac{K_{0}\left[\left(\mu^{2} x_{t}^{2}+\alpha^{2}\right)^{1 / 2}\right]}{K_{1}[\alpha]} \quad x_{t} \geq 0, \\
R=\sqrt{x_{t}^{2}+\xi_{v}^{2}}, \quad \mu=\frac{1}{\lambda}, \quad \frac{1}{\alpha}=\frac{\lambda}{\xi_{v}}, \quad \kappa=\frac{\lambda}{\xi}=\frac{\sqrt{2}}{\alpha}\left[1-K_{0}^{2}(\alpha) / K_{1}^{2}(\alpha)\right]^{1 / 2} .
\end{gathered}
$$

$$
\lambda=0.1750(63) \mathrm{fm} \quad \text { penetration length }
$$

$$
\xi=0.983(121) \mathrm{fm} \quad \text { coherence length length }
$$

- QCD in external background fields

(Paolo Cea, L.C.)

Background fields on the lattice can be implemented by means of the gauge invariant lattice Schrödinger functional

$$
\mathcal{Z}\left[U_{k}^{\mathrm{ext}}\right]=\int_{U_{k}\left(L_{t}, \vec{x}\right)=U_{k}(0, \vec{x})=U_{k}^{\mathrm{ext}}(\vec{x})} \mathcal{D} U \mathcal{D} \psi \mathcal{D} \bar{\psi} e^{-\left(S_{G}+S_{F}\right)}
$$

spatial lattice links belonging to a fixed time slice (and to spatial boundaries) are constrained
Q Abelian Chromomagnetic Background Field:
$\vec{A}_{a}^{\mathrm{ext}}(\vec{x})=\vec{A}^{\mathrm{ext}}(\vec{x}) \delta_{a, \tilde{a}}, \quad \boldsymbol{A}_{k}^{\mathrm{ext}}(\vec{x})=\delta_{k, 2} x_{1} \boldsymbol{H}$.
$U_{1}^{\text {ext }}(\vec{x})=U_{3}^{\text {ext }}(\vec{x})=1 \quad U_{2}^{\text {ext }}(\vec{x})=\left[\begin{array}{ccc}\exp \left(i \frac{a g H x_{1}}{2}\right) & 0 & 0 \\ 0 & \exp \left(-i \frac{a g H x_{1}}{2}\right) & 0 \\ 0 & 0 & 1\end{array}\right]$
static constant abelian chromomagnetic field directed along spatial
direction ^3 and direction a^{\sim} in the color space

Qagnetic Background Field:

$$
\begin{array}{ll}
A_{k}^{\text {ext }}(\vec{x})=\delta_{k, 2} x_{1} H . & U_{2}^{\text {ext }}(\vec{x})=\cos \left(q_{f} e H x_{1}\right)+i \sin \left(q_{f} e H x_{1}\right) \\
U_{1}^{\text {ext }}(\vec{x})=U_{3}^{\text {ext }}(\vec{x})=1 & a^{2} q_{f} e H=\frac{2 \pi}{L_{1}} n_{\mathrm{ext}}
\end{array}
$$

constant magneetic field directed along the X_{3} direction

Chromomagnetic background field ($2+1$) flavor QCD

We work on a line of constant physics ($M_{\pi}=160 \mathrm{MeV}$)

Chromomagnetic background field
HISQ/tree action $\mathbf{2 + 1}$ flavors

The deconfinement temperature depends on the strength of the chromomagnetic background field

Magnetic background field - 1 flavor QCD

staggered fermions + Wilson gauge action, $24^{3} \times 4$ lattice, am=0.025

The deconfinement temperature seems to be independent of the strength of the magnetic background field

In progress:

- EOS with magnetic background field
- study with HISQ fermions

Conclusions \& Acknowledgements

Q All simulations have been done mostly using the computational resources made available under the INFN SUMA project.

Q Most of the topics that I have discussed could not be addressed without the new computational resources that the SUMA project has provided to the INFN computational community.

Q Hope for a renewed support of computational theoretical physics at INFN.

