Computing the visible universe via large-scale simulations of QCD

C. Alexandrou University of Cyprus and Cyprus Institute

Supermassive Computations in Theoretical Physics 12th February 2015

Outline

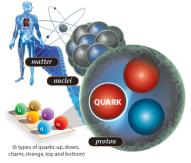
3

Motivation

Introduction to Lattice QCD

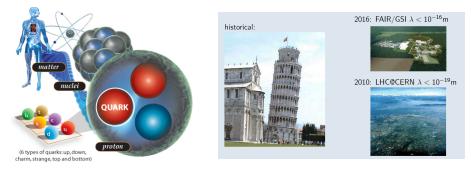
Recent achievements

- Simulations with physical values of the quark masses
- Masses of Hyperons and Charmed baryons
- Isospin effects

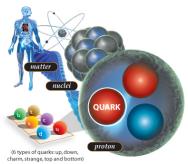

Challenges and future perspectives

- Nucleon Structure
 - Electromagnetic form factors
 - Axial, scalar and tensor charges
 - Proton spin puzzle
- Nuclear Physics
- QCD phase diagram

Conclusions


Strong Interactions

The quarks and the gluons are the elementary particles of the strong interactions



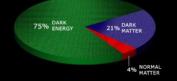
Strong Interactions

The quarks and the gluons are the elementary particles of the strong interactions revealed in scattering experiments at accelerator facilities.

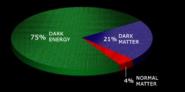
Strong Interactions

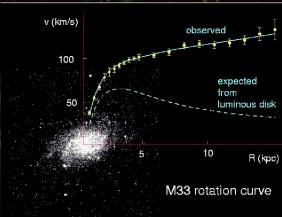
- Quark-Gluon plasma existed at $t \sim 10^{-32}$ s and $T \sim 10^{27}$, studied in heavy ion collisions at RHIC and LHC
- Hadrons formed at t ~ 10⁻⁶ s, and studied in many experimental facilities word-wide e.g. at CERN, JLab, Mainz.
- Matter-antimatter asymmetry: t ~ 10⁻⁶s

The Strong Interactions describe the evolution from the big-bag to the present universe and beyond.



Metals


Supernova


Collapse

Physics beyond the standard model

Physics beyond the standard model

The galaxy rotation problem is the discrepancy between observed galaxy rotation curves and the theoretical prediction based on luminous material \rightarrow Dark matter

Quantum ChromoDynamics (QCD)

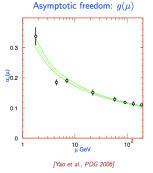
QCD-Gauge theory of the strong interaction Lagrangian: formulated in terms of quarks and gluons

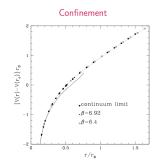
$$\mathcal{L}_{QCD} = -\frac{1}{4} F^{a}_{\mu\nu} F^{a\,\mu\nu} + \sum_{f=u,d,s,c,b,t} \bar{\psi}_{f} \left(i \gamma^{\mu} D_{\mu} - m_{f} \right) \psi_{f}$$

$$D_{\mu} = \partial_{\mu} - ig \frac{\lambda^{a}}{2} A^{a}_{\mu}$$

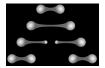
Harald Fritzsch

Murray Gell-Mann




Heinrich Leutwyler

Phys.Lett. B47 (1973) 365


This "simple" Lagrangian produces the amazingly rich structure of strongly interacting matter in the universe. Very elegant but very difficult to solve \implies use large-scale numerical simulation

Properties of QCD

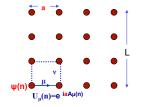
[Necco & Sommer, Nucl Phys B622 (2002) 328]

Protons make up to 99.9% of the visible matter in our universe

Nobel Prize in Physics 2004

"... for the discovery of asymptotic freedom in the theory of the strong interaction"

Frank Wilczek


David Politzer

C. Alexandrou (Univ. of Cyprus & Cyprus Inst.) Computing the visible universe with lattice QCD

QCD is a unique theory:

- Confinement quarks can never be free! Unlike any physical system we knew up to now.
- Almost all mass is generated by interactions
- But at high energy QCD behaves like a free theory → asymptotic freedom

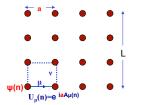
QCD on the lattice

Lattice QCD: K. Wilson, 1974 provided the formulation; M. Creutz, 1980 performed the first numerical simulation

Discretization of space-time with lattice spacing a ensuring gauge invariance

• Define quark fields $\psi(x)$ and $\overline{\psi}(x)$ on lattice sites

• Introduce parallel transporter connecting point x and $x + a\hat{\mu}$:


 $U_{\mu}(x) = e^{iaA_{\mu}(x)}$ i.e. gauge field $U_{\mu}(x)$ is defined on links

- Finite a provides an ultraviolet cutoff at π/a → non-perturbative regularization
- Finite $L \rightarrow$ discrete momenta in units of $2\pi/L$ if periodic b.c.
- Construct an appropriate action S: $S = S_G + S_F$ where

 $S_F = a^4 \sum_x \bar{\psi}(x) D\psi(x)$ i.e. quadratic in the fermions

 \rightarrow can be integrated out leaving a path integral over gauge fields

QCD on the lattice

Lattice QCD: K. Wilson, 1974 provided the formulation; M. Creutz, 1980 performed the first numerical simulation

Discretization of space-time with lattice spacing a ensuring gauge invariance

• Go to imaginary time: $\langle \mathcal{O} \rangle = \frac{1}{2} \int_{U} \mathcal{O}(D^{-1}, U) \det(D[U])^{n_f} e^{-S_G[U]} \rightarrow$ \rightarrow Monte Carlo simulation to produce a representative ensemble of $\{U_{\mu}(x)\}$ using the largest supercomputers

 \rightarrow Observables: $\langle \mathcal{O} \rangle = \frac{1}{Z} \sum_{\{U_{\mu}\}} O(D^{-1}, U_{\mu})$

5.0 Pflop/s, second biggest in Europe, 8th in the world - TOP 500 Nov. 2014

Fermion action

Observables: $\langle \mathcal{O} \rangle = \frac{1}{Z} \sum_{\{U_{\mu}\}} O(D^{-1}, U_{\mu})$

Several $\mathcal{O}(a)$ -improved fermion actions, K. Jansen, Lattice 2008 $\langle O \rangle_{cont} = \langle O \rangle_{latt} + \mathcal{O}(a^2)$

Action	Advantages	Disadvantages	
Clover improved Wilson	computationally fast	breaks chiral symmetry needs operator improvement	
Twisted mass (TM)	computationally fast automatic improvement	breaks chiral symmetry violation of isospin	
Staggered	computational fast	four doublers (fourth root issue) complicated contractions	
Domain wall (DW)	improved chiral symmetry	computationally demanding needs tuning	
Overlap	exact chiral symmetry	computationally expensive	

Several collaborations:

Clover	QCDSF, BMW, ALPHA, CLS, PACS-CS, NPQCD
Twisted mass	ETMC
Staggered	MILC
Domain wall	RBC-UKQCD
Overlap	JLQCD

Systematic uncertainties

- Finite lattice spacing *a* take the continuum limit $a \rightarrow 0$
- Finite volume *L* take infinite volume limit $L \to \infty$
- Identification of hadron state of interest

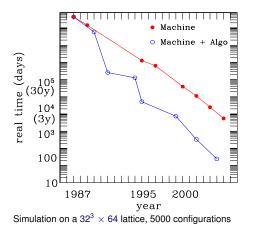
Systematic uncertainties

- Finite lattice spacing a take the continuum limit a → 0
- Finite volume L take infinite volume limit $L \to \infty$
- Identification of hadron state of interest

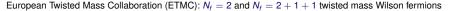
Creation operator for zero momentum: $J^{\dagger}_{\rho}(t_s) = \sum_{\vec{x}_s} J^{\dagger}_{\rho}(\vec{x}_s, t_s)$ Proton propagator:

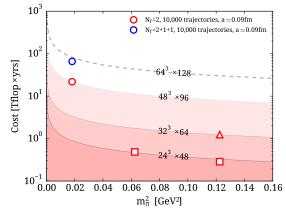
$$\begin{aligned} \langle J_{p}(t_{s})J_{p}^{\dagger}(0)\rangle &= \sum_{n} \langle 0|J_{p} e^{-H_{QCD}t_{s}}|n > < n|J_{p}^{\dagger}|0\rangle \\ &= \sum_{n} |\langle 0|J_{p}|n\rangle|^{2} e^{-E_{n}t_{s}} \xrightarrow{t_{s} \to \infty} |\langle 0|J_{p}|p\rangle|^{2} e^{-m_{p}t_{s}} \end{aligned}$$

Noise to signal increases with t_s : $\sim e^{(m_p - \frac{3}{2}m_\pi)t_s}$


Systematic uncertainties

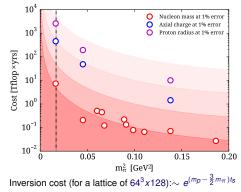
- Finite lattice spacing a take the continuum limit a → 0
- Finite volume L take infinite volume limit $L \to \infty$
- Identification of hadron state of interest
- Simulation at physical quark masses now feasible
- Computation of valence quark loops now feasible


Recent achievements


Computer and algorithmic development

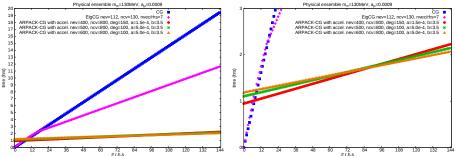
Algorithm development has been decisive

A number of collaborations are producing simulations with physical values of the quark mass: MILC, BMW, PACS-CS, ETMC

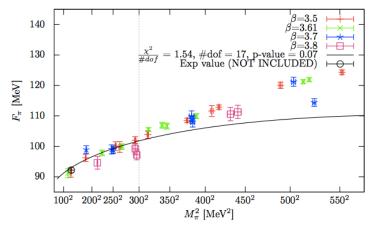


Simulation cost: $C_{\rm sim} \propto \left(\frac{300 \text{MeV}}{m_{\pi}}\right)^{c_m} \left(\frac{L}{3 \text{fm}}\right)^{c_L} \left(\frac{0.1 \text{fm}}{a}\right)^{c_a}$ We find $c_L \sim 4.5$ and $c_m \sim 2$ for a fixed lattice spacing.

Thanks B. Kostrzewa and G. Koutsou

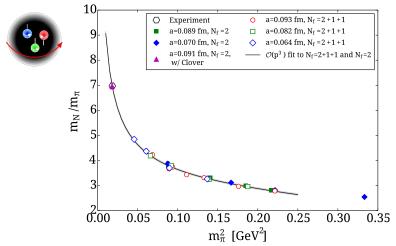

A number of collaborations are producing simulations with physical values of the quark mass: MILC, BMW, PACS-CS, ETMC

European Twisted Mass Collaboration (ETMC): $N_f = 2$ and $N_f = 2 + 1 + 1$ twisted mass Wilson fermions


A number of collaborations are producing simulations with physical values of the quark mass: MILC, BMW, PACS-CS, ETMC

European Twisted Mass Collaboration (ETMC): $N_f = 2$ and $N_f = 2 + 1 + 1$ twisted mass Wilson fermions Deflation of lower eigenvalues essential for computations at the physical point \rightarrow reduction of cost by ~ 20 times.

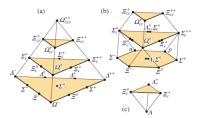
A number of collaborations are producing simulations with physical values of the quark mass: MILC, BMW, PACS-CS, ETMC


Budapest-Marseille-Wuppertal (BMW) Collaboration: $N_f = 2 + 1$ Clover improved Wilson fermions with HEX smearing

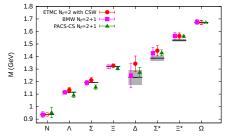
NLO SU(2) chiral perturbation theory for m_{π} < 300 MeV, S. Durr *et al.*, 1310.3626

A number of collaborations are producing simulations with physical values of the quark mass: MILC, BMW, PACS-CS, ETMC

European Twisted Mass Collaboration (ETMC): $N_f = 2$ and $N_f = 2 + 1 + 1$ twisted mass Wilson fermions The proton:



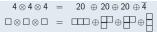
 $L \sim 3$ fm and $a \sim 0.1$ fm; Lowest order heavy baryon chiral perturbation theory with experimental value excluded

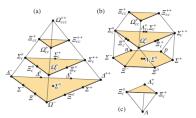

Hyperons and Charmed baryons

SU(4) representations:

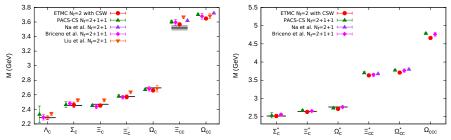
$4\otimes 4\otimes 4$	=	$20 \ \oplus \ 20 \oplus 20 \oplus \overline{4}$
$\Box\otimes \Box\otimes \Box$	=	

First goal: reproduce the low-lying masses

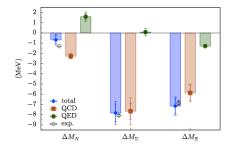



Results by ETM Collaboration using $N_f = 2$ simulations with physical pion mass for one lattice volume and lattice spacing a = 0.091 fm

Also $N_f = 2 + 1 + 1$ results: C.A., V. Drach, K. Jansen, <u>Ch. Kallidonis</u>, G. Koutsou, arXiv:1406.4310


Hyperons and Charmed baryons

SU(4) representations:

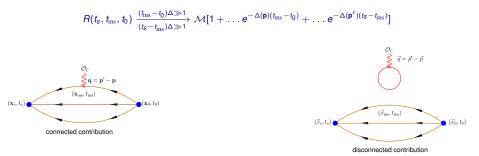


Results by ETM Collaboration using $N_f = 2$ simulations with physical pion mass for one lattice volume and lattice spacing a = 0.091 fm

Also $N_f = 2 + 1 + 1$ results: C.A., V. Drach, K. Jansen, <u>Ch. Kallidonis</u>, G. Koutsou, arXiv:1406.4310

Isospin and electromagnetic mass splitting

RBC and BMW collaborations: Treat isospin and electromagnetic effects to LO

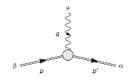

Baryon spectrum with mass splitting from BMW, Sz. Borsanyi et al., Phys. Rev. Lett. 111 (2013) 252001

- Nucleon mass: isospin and electromagnetic effects with opposite signs
- Physical splitting reproduced

Challenges and future perspectives

Challenges: I. Nucleon structure

Form ratio by dividing the three-point correlator by an appropriate combination of two-point functions:



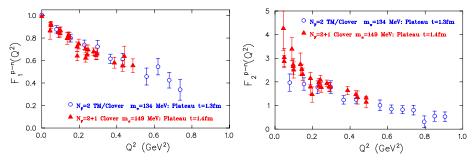
- M the desired matrix element; t_s, t_{ins}, t₀ the sink, insertion and source time-slices; Δ(p) the energy gap with the first excited state
- Identification of hadron state of interest dependent on \mathcal{O}_{Γ} i.e. different for g_A , σ -terms, EM form factors
- Connect lattice results to measurements:

 *O*_{MS}(μ) = Z(μ, a)O_{latt}(a) ⇒ evaluate Z(μ, a) non-perturbatively

Electromagnetic form factors

 $\langle N(p',s')|j^{\mu}(0)|N(p,s)\rangle = \bar{u}_N(p',s') \left[\gamma^{\mu} F_1(q^2) + \frac{i\sigma^{\mu\nu}q_{\nu}}{2m}F_2(q^2)\right] u_N(p,s)$

- Proton radius extracted from muonic hydrogen is 7.7 σ different from the one extracted from electron scattering, R. Pohl et al., Nature 466 (2010) 213
- Muonic measurement is ten times more accurate


Electromagnetic form factors

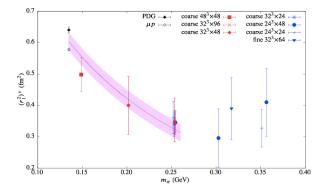
$$\langle N(p',s')|j^{\mu}(0)|N(p,s)\rangle = \bar{u}_N(p',s') \left[\gamma^{\mu}F_1(q^2) + \frac{i\sigma^{\mu\nu}q_{\nu}}{2m}F_2(q^2)\right] u_N(p,s)$$
The good news

ood news

Two studies at near physical pion mass:

- ETMC: $N_f = 2$ twisted mass with clover, a = 0.091 fm, $m_{\pi} = 134$ MeV, 1020 statistics
- MIT: $N_f = 2 + 1$ clover produced by the BMW collaboration, a = 0.116 MeV, $m_{\pi} = 149$ MeV, ~ 7750 statistics, J.M. Green et al. 1404,4029

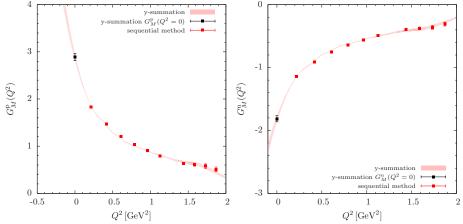
Agreement even before taking the continuum limit


σ

ß =====

Dirac and Pauli radii

Dipole fits:
$$\frac{G_0}{(1+Q^2/M^2)^2} \Rightarrow \langle r_i^2 \rangle = -\frac{6}{F_i} \frac{dF_i}{dQ^2} |_{Q^2=0} = \frac{12}{M_i^2}$$

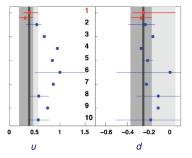

Need better accuracy at the physical point

Using results from summation method, J. M. Green et al., 1404.4029

Momentum dependence of form factors

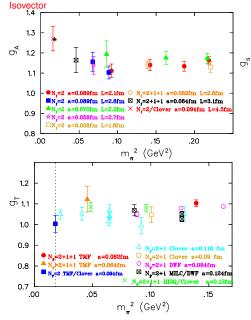
Avoid model dependence-fits: As a first step we calculated $G_M(0)$ (equivalently $F_2(0)$) at $m_{\pi} = 373$ MeV Disconnected contributions small

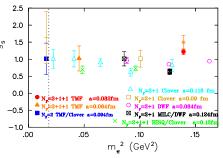
C.A., G. Koutsou, K. Ottnad, M. Petschlies, PoS(Lattice2014), 144


Nucleon charges: g_A, g_s, g_T

- scalar operator: $\mathcal{O}_{S}^{a} = \bar{\psi}(x) \frac{\tau^{a}}{2} \psi(x)$
- axial-vector operator: $\mathcal{O}_A^a = \bar{\psi}(x)\gamma^{\mu}\gamma_5 \frac{\tau^a}{2}\psi(x)$
- tensor operator: $\mathcal{O}_T^a = \bar{\psi}(x)\sigma^{\mu\nu}\frac{\tau^a}{2}\psi(x)$

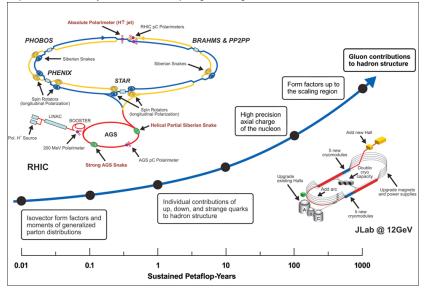
 $\implies \langle N(\vec{p'}) \mathcal{O}_{\Gamma} N(\vec{p})
angle |_{q^2=0}$ yields g_s, g_A, g_T


(i) isovector combination has no disconnect contributions; (ii) g_A well known experimentally, g_T to be measured at JLab


Planned experiment at JLab, SIDIS on ³He/Proton at 11 GeV:

Experimental values: $g_T^u = 0.39^{+0.18}_{-0.12}$ and $g_T^d = -0.25^{+0.3}_{-0.12}$

Nucleon charges: g_A, g_s, g_T



- g_A at the physical point mass indicates agreement with the physical value → important to reduce error - many results from other collaborations
- Experimental value of $g_T \sim 0.54^{+0.30}_{-0.13}$ from global analysis of HERMES, COMPASS and Belle e^+e^- data, M. Anselmino *et al.* (2013)
- Large excited state contributions to g_s: increasing the sink-source time separation to ~ 1.5 fm is crucial

Computational resources


Report on Nuclear Physics, Extreme Computing, Washington D.C., USA, Jan. 26-28, 2009.

Disconnected quark loop contributions

Notoriously difficult

- L(x_{ins}) = Tr [ΓG(x_{ins}; x_{ins})] → need quark propagators from all x
 ^{ins} or L³ more expensive as compared to the calculation of hadron masses
- $\bullet \ \ Large \ \ gauge \ noise \rightarrow large \ statistics$

• Use special techniques that utilize stochastic noise on all spatial lattice sites $\rightarrow N_r$ more expensive that hadron masses with $N_r \ll L^3$

 Reduce noise by increasing statistics
 ⇒ take advantage of graphics cards (GPUs) → need to develop special multi-GPU codes, (see talk by
 Mario Schröck on Modern hardware for lattice QCD)

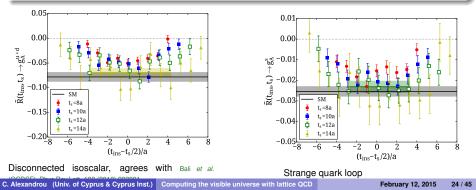
Disconnected quark loop contributions

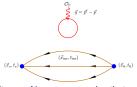
Notoriously difficult

- L(x_{ins}) = Tr [ΓG(x_{ins}; x_{ins})] → need quark propagators from all x
 ^{ins} or L³ more expensive as compared to the calculation of hadron masses
- Large gauge noise \rightarrow large statistics

- Use special techniques that utilize stochastic noise on all spatial lattice sites $\rightarrow N_r$ more expensive that hadron masses with $N_r \ll L^3$
- Reduce noise by increasing statistics
 ⇒ take advantage of graphics cards (GPUs) → need to develop special multi-GPU codes, (see talk by
 Mario Schröck on Modern hardware for lattice QCD)

Cluster of 8 nodes of Fermi GPUs

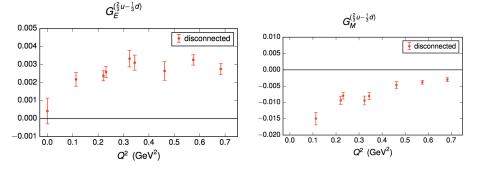

C. A., M. Constantinou, S. Dinter, V. Drach, K. Hadjiyiannakou, K. Jansen, G. Koutsou, A. Strelchenko, A. Vaquero arXiv:1211.0126 C.A., K. Hadjiyiannakou, G. Koutsou, A. O'Cais, A. Strelchenko, arXiv:1108.2473


Disconnected quark loop contributions

Notoriously difficult

- L(x_{ins}) = Tr [ΓG(x_{ins}; x_{ins})] → need quark propagators from all x̄_{ins} or L³ more expensive as compared to the calculation of hadron masses
- Large gauge noise → large statistics
- Use special techniques that utilize stochastic noise on all spatial lattice sites $\rightarrow N_r$ more expensive that hadron masses with $N_r \ll L^3$
- Reduce noise by increasing statistics
 ⇒ take advantage of graphics cards (GPUs) → need to develop special multi-GPU codes, (see talk by
 Mario Schröck on Modern hardware for lattice QCD)

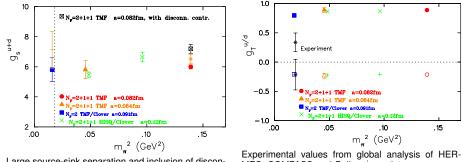
 $N_f = 2 + 1 + 1$ twisted mass, a = 0.082 fm, $m_{\pi} = 373$ MeV, $\sim 150,000$ statistics (on 4700 confs)



Disconnected quark loop contributions

Notoriously difficult

- L(x_{ins}) = Tr [ΓG(x_{ins}; x_{ins})] → need quark propagators from all x̄_{ins} or L³ more expensive as compared to the calculation of hadron masses
- Large gauge noise \rightarrow large statistics
- Use special techniques that utilize stochastic noise on all spatial lattice sites $\rightarrow N_r$ more expensive that hadron masses with $N_r \ll L^3$
- Reduce noise by increasing statistics
 ⇒ take advantage of graphics cards (GPUs) → need to develop special multi-GPU codes, (see talk by Mario Schröck on Modern hardware for lattice QCD)


100,000 Statistics using hierarchical probing, $N_f = 2 + 1$ clover (one level of stout smearing), $V = 32^3 \times 96$, $a \sim 0.114$ fm, $m_{\pi} \sim 320$ MeV, st. Meinel *et al.*, Lattice 2014, N. York, June, 2014

 (\vec{x}_{s}, t_{s})

Isoscalar nucleon charges: g_A, g_s, g_T

- scalar operator: $\mathcal{O}_{S}^{a} = \bar{\psi}(x) \frac{\tau^{a}}{2} \psi(x)$
- axial-vector operator: $\mathcal{O}_{A}^{a} = \bar{\psi}(x)\gamma^{\mu}\gamma_{5}\frac{\tau^{a}}{2}\psi(x)$
- tensor operator: $\mathcal{O}_T^a = \bar{\psi}(x)\sigma^{\mu\nu}\frac{\tau^a}{2}\psi(x)$
- $N_f = 2 + 1 + 1$ twisted mass, a = 0.082 fm, $m_{\pi} = 373$ MeV
- \bullet Disconnected part, \sim 150 000 statistics using GPUs

Results shown in \overline{MS} at 4 GeV² Analysis at the physical point still preliminary

Large source-sink separation and inclusion of disconnected is required Experimental values from global analysis of HER-MES, COMPASS and Belle e^+e^- data, M. Anselmino *et al.* (2013)

Nucleon spin puzzle

Since 1987 we know that quarks can account for only a small portion of a proton spin Who carries the rest?

 \rightarrow needs knowledge of the parton distribution functions (PDFs) measured in DIS

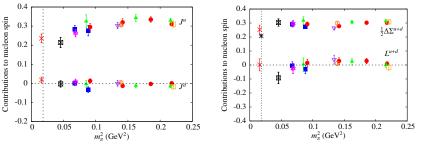
• Unpolarized moments:
$$\langle x^n \rangle_q = \int_0^1 dx x^n \left[q(x) - (-1)^n \bar{q}(x) \right]$$
,

• Helicity moments:
$$\langle x^n \rangle_{\Delta q} = \int_0^1 dx x^n \left[\Delta q(x) + (-1)^n \Delta \bar{q}(x) \right] ,$$

• Transversity moments: $\langle x^n \rangle_{\delta q} = \int_0^1 dx x^n \left[\delta q(x) - (-1)^n \delta \bar{q}(x) \right] ,$

 $q(x) = q(x)_{\downarrow} + q(x)_{\uparrow}$ $\Delta q(x) = q(x)_{\downarrow} - q(x)_{\uparrow}$ $\delta q(x) = q(x)_{\bot} + q(x)_{\top}$

Nucleon spin puzzle


Who carries the rest?

ightarrow needs knowledge of the parton distribution functions (PDFs) measured in DIS

Spin sum:
$$\frac{1}{2} = \sum_{q} \underbrace{\left(\frac{1}{2}\Delta\Sigma^{q} + L^{q}\right)}_{q} + J^{G}$$

 $J^q = \frac{1}{2} \left(A^q_{20}(0) + B^q_{20}(0) \right)$ and $\Delta \Sigma^q = g^q_A$

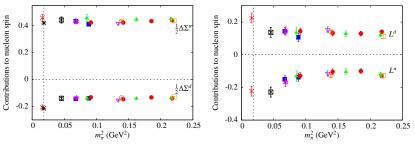
Connected only, except for one ensemble at $m_{\pi} = 373$ MeV where we have the disconnected contribution \rightarrow we can check the effect on the observables, O(150, 000) statistics

- Disconnected quark loop contributions non-zero for ΔΣ^{u,d,s}
- $L^d \sim -L^u$
- The total spin $J^{u+d} \sim 0.25 \implies$ Where is the other half?
- Contributions from J^G?

 \rightarrow on-going efforts to measure J_G at RHIC using polarized protons, E. R.Nocera *et al.* (NNPDF Collaboration), arXiv:1406.5539

 \rightarrow first efforts to compute J_G in lattice QCD e.g. K.-F. Liu (χ QCD), arXiv:1203.6388; C.A. *et al.*, arXiv:1311.3174

Nucleon spin puzzle


Who carries the rest?

ightarrow needs knowledge of the parton distribution functions (PDFs) measured in DIS

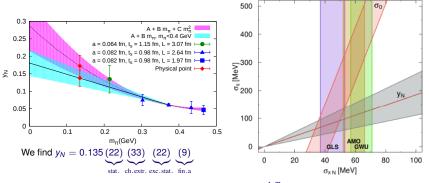
Spin sum:
$$\frac{1}{2} = \sum_{q} \underbrace{\left(\frac{1}{2}\Delta\Sigma^{q} + L^{q}\right)}_{q} + J^{G}$$

 $J^q = \frac{1}{2} \left(A^q_{20}(0) + B^q_{20}(0) \right)$ and $\Delta \Sigma^q = g^q_A$

Connected only, except for one ensemble at $m_{\pi} = 373$ MeV where we have the disconnected contribution \rightarrow we can check the effect on the observables, O(150, 000) statistics

- Disconnected quark loop contributions non-zero for ΔΣ^{u,d,s}
- $L^d \sim -L^u$
- The total spin $J^{u+d} \sim 0.25 \implies$ Where is the other half?
- Contributions from J^G?

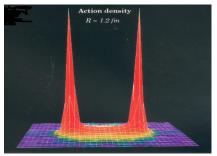
 \rightarrow on-going efforts to measure J_G at RHIC using polarized protons, E. R.Nocera *et al.* (NNPDF Collaboration), arXiv:1406.5539


 \rightarrow first efforts to compute J_G in lattice QCD e.g. K.-F. Liu (χ QCD), arXiv:1203.6388; C.A. *et al.*, arXiv:1311.3174

The quark content of the nucleon

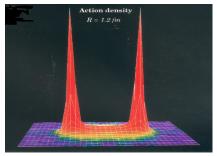
- σ_I ≡ m_I⟨N|ūu + dd|N⟩: measures the explicit breaking of chiral symmetry Extracted from analysis of low-energy pion-proton scattering data Largest uncertainty in interpreting experiments for dark matter searches - Higgs-nucleon coupling depends on σ_I, J. Ellis, K. Olive, C. Savage, arXiv:0801.3656
- In lattice QCD it can be obtained via the Feynman-Hellman theorem: $\sigma_l = m_l \frac{\partial m_N}{\partial m_l}$
- Similarly $\sigma_s \equiv m_s \langle N | \bar{s}s | N \rangle >= m_s \frac{\partial m_N}{\partial m_s}$
- The strange quark content of the nucleon: $y_N = \frac{2\langle N|\hat{s}_S|N \rangle}{\langle N|\hat{u}u+\hat{d}d|N \rangle} = 1 \frac{\sigma_0}{\sigma_1}$, where σ_0 is the flavor non-singlet
- A number of groups have used the spectral method to extract the σ-terms, R. Young, Lattice 2012 But they can be also calculated directly

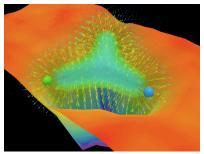
The quark content of the nucleon


- $\sigma_l \equiv m_l \langle N | \bar{u}u + \bar{d}d | N \rangle$:
- In lattice QCD it can be obtained via the Feynman-Hellman theorem: $\sigma_l = m_l \frac{\partial m_N}{\partial m_l}$
- Similarly $\sigma_s \equiv m_s \langle N | \bar{s}s | N \rangle >= m_s \frac{\partial m_N}{\partial m_s}$
- The strange quark content of the nucleon: $y_N = \frac{2\langle N | \tilde{s} s | N \rangle}{\langle N | \tilde{v} u + \tilde{d} d | N \rangle} = 1 \frac{\sigma_0}{\sigma_1}$, where σ_0 is the flavor non-singlet
- A number of groups have used the spectral method to extract the σ -terms, R. Young, Lattice 2012 But they can be also calculated directly

Using $\sigma_s = \frac{1}{2} \frac{m_s}{m_l} y_N \sigma_l$ we find σ_s to be less $\sim 150 \text{ MeV}$

Challenges: II. Nuclear forces

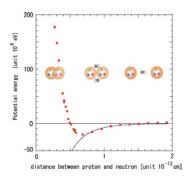

From the $q\bar{q}$ potential to the determination of nuclear forces

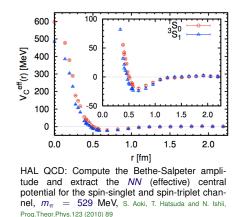

K. Schilling, G. Bali and C. Schlichter, 1995

Challenges: II. Nuclear forces

From the $q\bar{q}$ potential to the determination of nuclear forces

K. Schilling, G. Bali and C. Schlichter, 1995

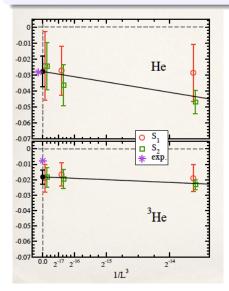

A.I. Signal, F.R.P. Bissey and D. Leinweber, arXiv:0806.0644

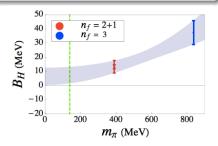

Challenges: II. Nuclear forces

From the $q\bar{q}$ potential to the determination of nuclear forces

Determination of the nuclear force is essential for understanding the binding and stability of atomic nuclei, the structure of neutron stars and supernova explosions Two approaches:

- Determine N-N energy as a function of L → extract phase shift NPQCD
- Determine BS wave function $\langle 0|N(\vec{r})N(\vec{0})|NN\rangle$ and extract asymptotically the phase shift HALQCD





Challenges: III. Nuclear Physics

Going beyond single hadrons

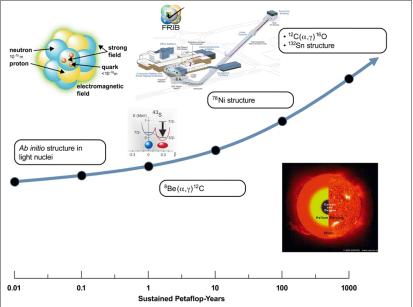
First attempts by HAL QCD and NPLQCD \rightarrow study nuclear physics, neutron stars, ...

H-dibaryon: a bound system with the quantum numbers of $\Lambda\Lambda,$ R. L. Jaffe, Phys. Rev. Lett. 38, 195 (1977) Still inconclusive:

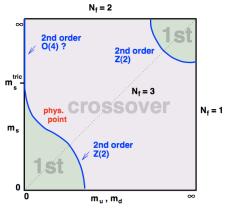
• NPLQCD $N_f = 2 + 1$: Not bound, S.R. Beane *et al.*, Phys.Rev. D85 (2012) 054511.

• HAL QCD $N_f=3$: Bound H-dibaryon with the binding energy of 30-40 MeV for $m_{\pi}\sim 673-1015$ MeV, T. Inoue *et al.*, Phys. Rev. Lett. 106 (2011) 162002. Need a $\Lambda\Lambda - N\Xi - \Sigma\Sigma$ coupled channel analysis

Only at the beginning...


Computational resources

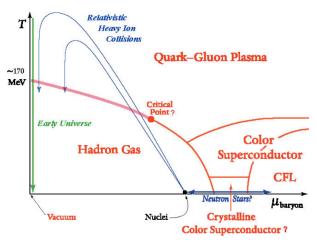
Report on Nuclear Physics, Extreme Computing, Washington D.C., USA, Jan. 26-28, 2009.



Computational resources

Report on Nuclear Physics, Extreme Computing, Washington D.C., USA, Jan. 26-28, 2009.

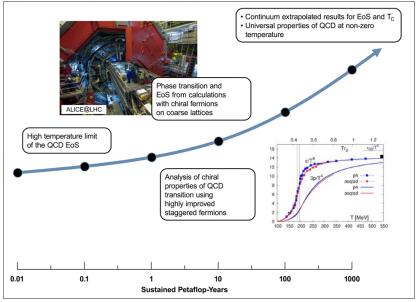
Challenges IV. QCD phase diagram



Zero baryon density, phase transition extensively studied

- 1st order transition for large quark masses
- Ist order transition for small quark masses
- No transition for physical u-, d- and s- quarks

Challenges IV. QCD phase diagram


Non-zero density action becomes complex \rightarrow need new techniques

see talks by Francesco Negro and Leonardo Cosmai

Computational resources

Report on Nuclear Physics, Extreme Computing, Washington D.C., USA, Jan. 26-28, 2009.

Conclusions

Simulations at the physical point \rightarrow that's where we always wanted to be!

- Results on g_A, ⟨x⟩_{u-d} etc at the physical point are now directly accessible But will need high statistics and careful cross-checks → noise reduction techniques are crucial e.g. AMA, TSM, smearing etc
- Evaluation of quark loop diagrams has become feasible need to make our methods work at the physical point
- Predictions for other hadron observables are emerging e.g. axial charge of hyperons and charmed baryons
- Confirmation of experimentally known quantities such as g_A will enable reliable predictions of others \rightarrow provide insight into the structure of hadrons and input that is crucial for new physics such as the nucleon σ -terms, g_s and g_T
- The study of excited states and resonances is under way → provide insight into the structure of hadrons and input that is crucial for new physics
- New methods for finite density simulations, ab Initio Nuclear Physics
- Many challenges ahead ...

Conclusions

Simulations at the physical point \rightarrow that's where we always wanted to be!

- Results on g_A, ⟨x⟩_{u-d} etc at the physical point are now directly accessible But will need high statistics and careful cross-checks → noise reduction techniques are crucial e.g. AMA, TSM, smearing etc
- Evaluation of quark loop diagrams has become feasible need to make our methods work at the physical point
- Predictions for other hadron observables are emerging e.g. axial charge of hyperons and charmed baryons
- Confirmation of experimentally known quantities such as g_A will enable reliable predictions of others \rightarrow provide insight into the structure of hadrons and input that is crucial for new physics such as the nucleon σ -terms, g_s and g_T
- The study of excited states and resonances is under way → provide insight into the structure of hadrons and input that is crucial for new physics
- New methods for finite density simulations, ab Initio Nuclear Physics
- Many challenges ahead ...

As simulations at the physical pion mass and more computer resources are becoming available we expect many physical results on key hadron observables that will impact both experiments and phenomenology

Acknowledgments

European Twisted Mass Collaboration (ETMC)

Cyprus (Univ. of Cyprus, Cyprus Inst.), France (Orsay, Grenoble), Germany (Berlin/Zeuthen, Bonn, Frankfurt, Hamburg, Münster), Italy (Rome I, II, III, Trento), Netherlands (Groningen), Poland (Poznan), Spain (Valencia), Switzerland (Bern), UK (Liverpool)

Collaborators: A. Abdel-Rehim, M. Constantinou, V. Drach, K. Hadjiyiannakou, K.Jansen Ch. Kallidonis, G. Koutsou,K. Ottnad, M. Petschlies, C. Weise, A. Vaquero

The Project Cy-Tera (NEA YTIOAOMH/ΣTPATH/0308/31) is co-financed by the European Regional Development Fund and the Republic of Cyprus through the Research Promotion Foundation

HPC-LEAP

European Joint Doctorates Program in High Performance Computing for

Life sciences, Engineering and Physics

15 Marie Skłodowska-Curie PhD fellowships in:

- · Lattice QCD
- · Turbulent and Complex Flows
- · Computational Biology
- · Modelling and algorithms
- · HPC architectures and technologies

The selected fellows will be admitted at two institutions receiving a dual degree upon completion

An attractive remuneration package is offered including salary, mobility and family allowances*

Applications are welcome from candidates worldwide with a scientific background and a keen interest in computational science

For further information on admissions, requirements and eligibility criteria please visit our website:

Find HPC-LEAP on social media fin

🚯 Bachman 🏶 anna RWTHANGAN TU/a annan 🐈 bacha 🕛 annan 🤴 Malais Ingeria Cologe Schulder

Applications submitted after this date will be considered subject to availability