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NUMERICAL GENERAL 
RELATIVITY (WITH MATTER)

• There is a wide zoology of phenomena in the Sky where General-Relativistic 
effect play a very importa role.

• Solve the Einstein Equations without approximations in order to:

• investigate the physics of gravitational collapse

• investigate structure and stability of the most relativistic compact objects

• model the most catastrophic events in the Universe (GRB, magnetars,...)

• model real sources of gravitational waves : core colapse in supernova and binary 
mergers (NS-NS, NS-BH, BH-BH)



GENERAL RELATIVITY IS IMPORTANT WHEN 
NEUTRON STARS (OR BLACK HOLES)  

ARE PRESENT 

• Besides, NS are quite peculiar since all the four fundamental 
forces play a crucial role in determining their structure and 
dynamics and therefore they arouse interest in all fields of 
modern physics.

• Two of the most intriguing puzzles that one day could be 
solved with NS are: 
—The behaviour of matter at supra nuclear densities 
—The study of gravitational waves (GW) signals

GW are ripples of space-time traveling at the speed of light. To 
this day, they remain the most elusive prediction of the Einstein’s 

theory of General Relativity.



NEUTRON STARS
• Neutron stars are extremely compact star with a typical mass 

             and a typical radius of              , resulting in a 
compactness            times higher than the Sun.

• These properties make them the most compact objects 
endowed with a structure in our Universe, such that they can 
not be properly described without resorting to General 
Relativity.

• They exhibit very high densities (nuclear density)             
very fast rotation (around 716 Hz) and a strong magnetic field  
(magnetic fields range between 1012 G to 1016 G in 
magnetars

M ⇡ 1.4M� R ⇡ 10km

M/R ⇡ 100

⇢0 ⇡ 2.8⇥ 1014g/cm3



NEUTRON STAR
• NS are formed from the collapse of large stars 

at the end of their lives, as remnant of 
Supernova explosion

• A pulsar is highly magnetized rotating NS that 
emits a beam of EM radiation.

• NS have surface magnetic fields strength of the 
order of 1012 Gauss.

• Magnetars have ultra-strong magnetic fields up 
to 1016 Gauss.

• 21 magnetars are known, with 5 more 
candidates awaiting for confirmation.



PARMA GROUP EFFORTS

• Stiffness effects on the dynamics of the bar-mode instability in 
full General Relativity.

• Dynamical bar-mode instability in rotating and magnetized 
relativistic stars.

• New Project: Magnetic Evolution during Binary Neutron Star 
Merger 

• The TEONGRAV has related project on BNS-merger (here in 
Trento) and on Magnetic Evolutions in Magnetars (Florence)



THE ROLE OF THE INFN  
SUMA PROJECT

• The INFN theoretical community is active in several scientific areas that require 
significant computational support. These areas stretch over a wide spectrum, 
requiring in some cases fairly limited computing resources ………… SUMA 
plans to support all these physics goals, and at the same time aims to explore 
all suitable ways in which the technological developments made at 
INFN can be put to good use for the present and future needs of 
computational physics.

• Numerical Relativity ….. aim to SIMULATE (not compute) simplified models of 
matter at high-density … that may play a significant role on the physics of NS 
and/or of the generation of Gravitational Waves.

• No experiment available …. indeed … we need computer experiment to 
understand which physical ingredients are import to our understanding of the 
fundamental physics at very-high density     



AN EXAMPLE OF SYSTEMS 
THAT ARE STUDIED

G2_I12vs12_D4R25_41_5_km 

M_ADM=3.251 
separation 45Km 
K = 123.6 
Gamma = 2 
dx=0.28125 (415 m)

An evolution that  
can be studied on  
a small system



COMPUTATIONAL NEED ARE AT THE 
FOREFRONT OF THE ACTUAL 

TECHNOLOGY 

• Need to solve in (coordinate time) a very complex set of Partial Differential Equations

• Very high number of physical fields that should be evolved (10 for the metric + 7 for 
perfect fluid matter + 3 for magnetic fields)

• Need of auxiliary fields variable (order of 20 or more) to properly formulate the initial 
values problem, i.e. to have the equations set in Hyperbolic-Form.

• Grid size to be at least of the order 200x200x200 to have enough (spatial) resolution

• Need to grid refinement setting (grid-nesting) in order to cover the space around the 
source to properly set the boundary condition and to extract gravitational wave signal.  
(between 4 to 9 levels of mesh-refinement structure)



THE EINSTEIN EQUATIONS

• BSSN version of the  
Einstein’s equations  
that introduce additional 
conformal variables:

• Matter and MAGNETIC  
evolution using shock  
capturing methods in  
the General-Relativistic  
Ideal-Magneto-Hydrodynamics approximation (infinite conductivity) 
using GRHydro code that implements a Constrain Transporte 
methods to preserve zero divergence condition.
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[4] M. Shibata, T. Nakamura: “Evolution of three dimensional gravitational ..”, Phys. Rev. D52(1995)5429 
[5] T.W. Baumgarte, S.L. Shapiro: “On the numerical integration of Einstein..”, Phys. Rev. D59(1999)024007



NS MAY BE UNSTABLE
• NS in nature are rotating and subject to non-axisymmetric 

rotational instabilities. Now the question are…. 
which types of instabilities will develop? 
does a fully developed instability persist for long and, if not, what 
induces its decay? 
does an unstable NS radiate GW and how much? 
what is the threshold of instabilities?(dependence on EOS, …)

• Previous work in literature usually focus on polytropic models 
with gamma=2. The expected value for real NS is more likely 
around gamma=2.5-3 in the interior.

• Our aim is to obtain properties that resemble a more realistic 
case and yet maintaining computational simplicity. 



DYNAMICAL BAR-MODE INSTABILITY
• Dynamics of a Binary 

Neutron Merger.. … 
just after the formation of 
an HyperMassive Neutron 
Star there is a BAR-
deformed stage 

• BAR-MODE unstable stars  
show a stage that 
have a similar stage

• NICE PLAYGROUND  
to study magnetic 
DYNAMICS in NSs



DYNAMICAL BAR MODE INSTABILITY



EFFECT OF THE EOS

SLy:  unified  Sly  EOS  models  high-density  and 
cold (i.e. zero temperature) matter via a Skyrme 
effective  potential  for  the  nucleon-nucleon 
interactions
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In particular we are using the BSSN variant of the ADM

evolution [35–37] which is conformal traceless reformulation

of the above system of evolution equation where the evolved

variable are the conformal factor (φ), the trace of the extrinsic
curvature (K), the conformal 3-metric (γ̃ ij), the conformal
traceless extrinsic curvature (Ãij) and the conformal connec-
tion functions (Γ̃i) defined as:

φ =
1
4

log( 3
√

γ) (2.5)

K = γijKij (2.6)

γ̃ij = e−4φγij (2.7)

Ãij = e−4φ(Kij − γijK) (2.8)

Γ̃i = γ̃ij
,j (2.9)

The code is designed to handle arbitrary shift and lapse con-

ditions, which can be chosen as appropriate for a given space-

time simulation. More information about the possible families

of space-time slicings which have been tested and used with

the present code can be found in [38? ]. Here, we limit our-

selves to recalling details about the specific foliations used in

the present evolutions. In particular, we have used hyperbolic

K-driver slicing conditions of the form

(∂t − βi∂i)α = −f(α) α2(K − K0), (2.10)

with f(α) > 0 andK0 ≡ K(t = 0). This is a generalization
of many well known slicing conditions. For example, setting

f = 1 we recover the “harmonic” slicing condition, while,
by setting f = q/α, with q an integer, we recover the gener-
alized “1+log” slicing condition [39]. In particular, all of the
simulations discussed in this paper are done using condition

(2.10) with f = 2/α. This choice has been made mostly be-
cause of its computational efficiency, but we are aware that

“gauge pathologies” could develop with the “1+log” slic-
ings [40, 41].

As for the spatial gauge, we use one of the “Gamma-driver”

shift conditions proposed in [38] (see also [42]), that essen-

tially act so as to drive the Γ̃i to be constant. In this re-

spect, the “Gamma-driver” shift conditions are similar to the

“Gamma-freezing” condition ∂tΓ̃k = 0, which, in turn, is
closely related to the well-knownminimal distortion shift con-

dition [43]. The differences between these two conditions in-

volve the Christoffel symbols and are basically due to the fact

that the minimal distortion condition is covariant, while the

Gamma-freezing condition is not.

In particular, all of the results reported here have been ob-

tained using the hyperbolic Gamma-driver condition,

∂2
t βi = F ∂tΓ̃i − η ∂tβ

i, (2.11)

where F and η are, in general, positive functions of space
and time. For the hyperbolic Gamma-driver conditions it is

crucial to add a dissipation term with coefficient η to avoid
strong oscillations in the shift. Experience has shown that by

tuning the value of this dissipation coefficient it is possible to

almost freeze the evolution of the system at late times. We

typically choose F = 3
4α and η = 2 and do not vary them in

time.

B. Evolution of the hydrodynamics equations

In this work we have considered the space time described

in the standard 3+1 metric decomposition variables γ ij , α, βi

andmatter is assumed described by a perfect fluid EnergyMo-

mentum tensor:

T µν = ρhuµuν + pgµν (2.12)

h = 1 + ϵ +
p

ρ
(2.13)

and an equation of state of type p = p(ρ, ϵ). The code has
been written to use any EOS, but all of the simulation per-

formed so far have been performed using either a (isoentropic)

polytropic EOS

p = KρΓ , (2.14)

e = ρ +
p

Γ − 1
, (2.15)

or an “ideal fluid” (Γ-law) EOS

p = (Γ − 1)ρ ϵ . (2.16)

Here, e = ρ(1+ϵ) is the energy density in the rest-frame of the
fluid,K the polytropic constant and Γ the adiabatic exponent.
In the case of the polytropic EOS (2.14), Γ = 1+1/N , where
N is the polytropic index (we have always used N = 1, i.e.,
Γ = 2 that is a good approximation for a quite stiff equation of
state) and the evolution equation for τ needs not be solved. In
the case of the ideal-fluid EOS (2.16), on the other hand, non-

isentropic changes can take place in the fluid and the evolution

equation for τ (see below) needs to be solved. This means that
matter is described by the five dynamical variables ρ, ϵ, uµ

(where uµuµ = −1) with the equation of motions

▽µT µν = 0 ,

▽µ(ρuµ) = 0 .
(2.17)

An important feature of the Whisky code is the imple-

mentation of a conservative formulation of the hydrodynam-

ics equations [44–46], in which the set of equations (2.17) is

written in a hyperbolic, first-order and flux-conservative form

of the type

∂tq + ∂if (i)(q) = s(q) , (2.18)

where f (i)(q) and s(q) are the flux-vectors and source terms,
respectively [47]. Note that the right-hand side (the source

terms) depends only on the metric, and its first derivatives,

and on the stress-energy tensor. Furthermore, while the sys-

tem (2.18) is not strictly hyperbolic, strong hyperbolicity is

recovered in a flat space-time, where s(q) = 0.
As shown by [45], in order to write system (2.17) in the

form of system (2.18), the primitive hydrodynamical variables

(i.e. the rest-mass density ρ and the pressure p (measured in
the rest-frame of the fluid), the fluid three-velocity v i (mea-

sured by a local zero-angular momentum observer), the spe-

cific internal energy ϵ and the Lorentz factor W ) are mapped
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[1] R. De Pietri, A. Feo, L. Franci and F. Loeffler “Neutron star instabilities in full general relativity using a Γ=2.75 ideal fluid”  Phys. Rev. D 90, 024034  arXiv:1403.8066.
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STUDYING STIFFNESS EFFECTS

0.0 0.5 1.0 1.5 2.0 2.5
1/t

2
2 (ms2)

0.245

0.250

0.255

0.260

0.265

0.270

0.275

b

G225 pysim r50.txt

0.0 0.5 1.0 1.5 2.0 2.5 3.0
M?/M�

0.242

0.244

0.246

0.248

0.250

0.252

0.254

0.256

0.258

b

c

bc(M0 = 0)= 0.2563 (1 ± 0.0035)

m = -0.003926 (1 ± 0.2295) 1/M�

0 1 2 3 4 5
1/t

2
2 (ms2)

0.245

0.250

0.255

0.260

0.265

0.270

0.275

b

G300 pysim r50.txt

0.0 0.5 1.0 1.5 2.0 2.5 3.0
M?/M�

0.242

0.244

0.246

0.248

0.250

0.252

0.254

0.256

0.258

b

c

bc(M0 = 0)= 0.2507 (1 ± 0.0023)

m = -0.003017 (1 ± 0.2591) 1/M�

0 1 2 3 4
1/t

2
2 (ms2)

0.245

0.250

0.255

0.260

0.265

0.270

0.275

b

G275 pysim r50.txt

0.0 0.5 1.0 1.5 2.0 2.5 3.0
M?/M�

0.242

0.244

0.246

0.248

0.250

0.252

0.254

0.256

0.258

b

c

bc(M0 = 0)= 0.2531 (1 ± 0.0022)

m = -0.003432 (1 ± 0.1601) 1/M�

0 1 2 3 4
1/t

2
2 (ms2)

0.245

0.250

0.255

0.260

0.265

0.270

0.275

b

G250 pysim r50.txt

0.0 0.5 1.0 1.5 2.0 2.5 3.0
M?/M�

0.242

0.244

0.246

0.248

0.250

0.252

0.254

0.256

0.258

b

c

bc(M0 = 0)= 0.2539 (1 ± 0.0040)

m = -0.003405 (1 ± 0.2758) 1/M�

0.0 0.2 0.4 0.6 0.8
1/t

2
2 (ms2)

0.245

0.250

0.255

0.260

0.265

0.270

0.275

b

G200 pysim r50.txt

0.0 0.5 1.0 1.5 2.0 2.5 3.0
M?/M�

0.245

0.250

0.255

0.260

0.265

b

c

bc(M0 = 0)= 0.2640 (1 ± 0.0059)

m = -0.004424 (1 ± 0.2013) 1/M�

Γ=2.75Γ=2.25

Γ=2.00 Γ=2.50

Γ=3.00

βC=0.2640

βC=0.2563 βC=0.2531

βC=0.2539

βC=0.2507

2.0 2.2 2.4 2.6 2.8 3.0
G

0.250

0.255

0.260

0.265

b

c

m = -0.0074 (±0.0008) q = 0.2730 (±0.0018)

Stiffness effect on critical bc

New data
Old data

Stiffness effects on the dynamics of the bar-mode instability of 
Neutron Stars in full General Relativity F Löffler, R De Pietri, A 
Feo, L Franci, F Maione - arXiv preprint arXiv:1411.1963, 2014



THE CODE: EINSTEIN TOOLKIT
• Cactus  

framework for parallel high performance computing 
(Grid computing, parallel I/O)

• Einstein Toolkit open set of over 100 Cactus thorns 
for computational relativity along with associated tools 
for simulation management and visualization

• Mesh refinement with Carpet 

• Magnetic+Matter Evolution with GRHydro:  
CT evolution of Magnetic Field 
HLLE Riemann Solver  
ppm Reconstruction methods  
BSSN gravitational evolutions 

• Initial data computed using 
RNS solver by Stergioulas 
+ a B poloidal perturbation

• 3D cartesian grids with 4 refinement levels
• resolution:  0.25 M⊙ ∼ 0.360 km (typical)
• grid size:     30 M⊙ ∼   44 km   (240x240x120)  

  42 M⊙ ∼   62 km                
  84 M⊙ ∼ 124 km               
168 M⊙ ∼ 248 km       



MAGNETIC FIELDS ARE AN 
IMPORTANT INGREDIENT ON THE 

PHYSICS OF NEUTRON STARS
• Newly born Neutron Stars are:

• highly differentially rotating
• magnetized (magnetic fields are potentially as strong as 1016 Gauss) but 

the normal expected amplitude is 1012 Gauss.
• possible sources for Gravitational Waves 

• Matter instabilities may enhance Gravitational Waves emission and the 
Hyper Massive Neutron formed after a binary merger are highly 
deformed!

• What happen to magnetic fields during unstable or highly deformed phase 
of neutron stars ? Are present instability that can magnify the amplitude of 
the magnetic field ?  



THE DYNAMICS OF AN 
UNSTABLE MODELS

• Dynamics of the evolution of  a 
model with a seed magnetic 
field of 1014 Gauss.

• Left: matter density

• Right: modulus of the magnetic 
fields [1012-1016,5  Gauss] in the xy 
plane a z=1.5

• grid = [207x407x407], i.e more 
the 300 points inside the stars

U13b1e14_r15



DYNAMICS OF THE 
MAGNETIC FIELD

BrBphi Bz

xy-plaze at z=6km



DIFFERENT VALUE OF B

the wavelength λMRI of the fast-growing modes is proportional to the magnetic field strength 
the growth time τMRI is only related to rotation (independent from B field!)
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DIFFERENT RESOLUTIONS

• Effect of the used spatial resolution on the 
simulated dynamics.

0 5 10 15 20 25
t [ms]

0

1

2

3

4

5

6

(E
m

ag
/(

10
�

6 M
�
))

1/
2

max(B(0)
z ) = 1 · 1014 Gauss

dx=0.15
dx=0.25
dx=0.375
dx=0.50
dx=0.60

10 15 20 25
t [ms]

100

(E
m

ag
/(

10
�

6 M
�
))

1/
2

max(B(0)
z ) = 1 · 1014 Gauss

dx=0.15
dx=0.25
dx=0.375
dx=0.50
dx=0.60

0 2 4 6 8 10
t [ms]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

g



STRATIFICATION OF THE 
MAGNETIC FIELD

• In the dynamics of 
the model with a 
seed magnetic field 
of 1014 Gauss.

• Image obtained 
using a spatial 
resolution of 
dx=0.20 (~295m) Snapshot of the amplitude of the radial component of magnetic fields at time t=13.5 ms of 

the evolution of the stellar model U13-1.0e14. Please note, in the two sections on the xz-
plane and yz-plane, the typical “wave” structure expected in the presence of MRIs.

U13b1e14_r20

Br



MAGNETOROTATIONAL INSTABILITY
The magneto-rotational instability or MRI is an instability that :
• represents an important mechanism to amplify magnetic fields
• arises when the angular velocity of a conducting fluid in a magnetic field decreases as 

the distance from the rotation center increases
• shows rapidly growing and spatially periodic structure (channels flows)
• is very important in astrophysics (important part of the dynamics in accretion disks)
The MRI can be observed 
• Local “Shearing boxes”
• Cylindrical disks (semi-global)
• Axisymmetric global simulations
• Full 3D global simulations (challenging due to computational limitations!) 3D global 

simulations (challenging due to computational limitations!



CONCLUSIONS

• SUMA project has bring to the group the possibility to do 
fore-front numerical simulations of …..  general relativistic 
compact object dynamics (NS,BH) in our universe.  


