
SVD Attivita' e Richieste 2015

Incontro con i Referees 11 Settembre 2014

Belle2 SVD: OUTLINE

- ·Descrizione delle attivita' 2014 che si protrarranno nel 2015
- ·Identificate le attivita' 2015 e quantificate le spese.
- •Inevitabili modifiche alla schedule generale potrebbero implicare un loro shift temporale (e.g. Beast1), dipendente dagli scenari.

Trieste:

- Test sensori
- Radiation monitoring (BEAST)
- Monitoring/ILK temperatura/ hum.

Pisa:

- Produzione FW/BW assemblies
- Commissioning Power Supply
- Montaggio moduli

TRIESTE: Test dei DSSD Micron e HPK (2014)

Micron: tutti i test a Trieste e Vienna

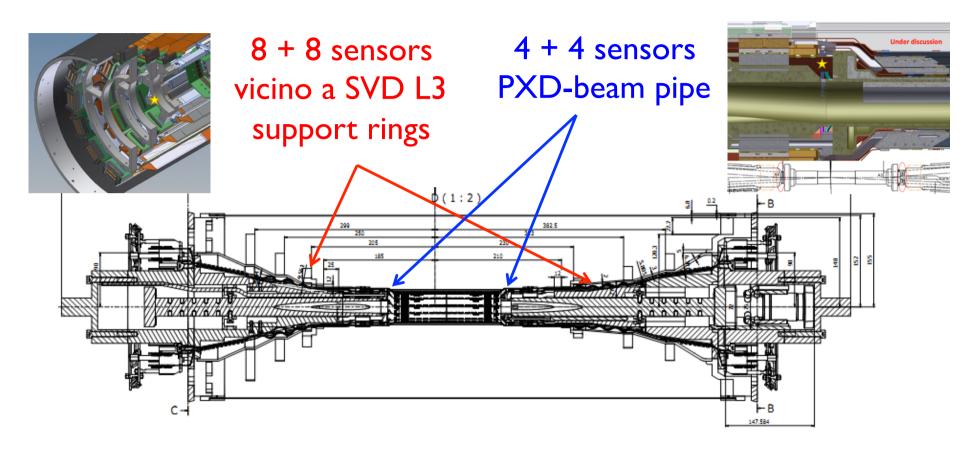

- Trieste: test eseguito finora su 3 sensori preserie e 25 di serie; solo 2 rigettati

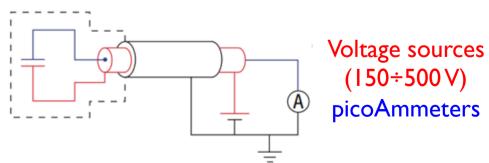
HPK (solo test parziali alla produzione)


- **Trieste**: test dettagliati su un campione di sensori

Qualità complessivamente buona in entrambi i casi; nel 2015 prevedibili alcuni ulteriori test a campione

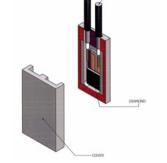
Sensor testing Jig (top)


Sensor testing set-up


- · Front and Back-side Rings are connected through cables
- Strips are contacted by a 40-needle Probe Card

Monitor di Radiazione e Beam Abort

R&D, sensori in diamante, scCVD


Elettronica di lettura e Trigger di Beam Abort:

Collaborazione con Elettra – Electronics Division

Meccanica, cablaggi, misure di rumore (2014)

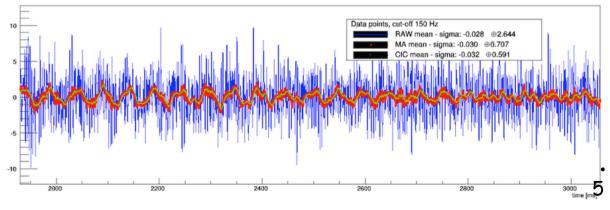
Meccanica compatta

12 x 20 x 3.1 mm³ multi-layer package, Rogers laminate

Cablaggi, scelta e layout

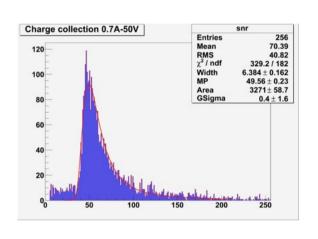
3 m coaxial (HS SM47LSFH) dai sensori ai DOCKs

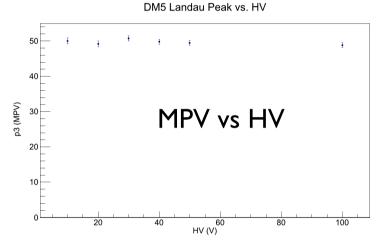
+ 15 m HS S_04162-B60, double shield

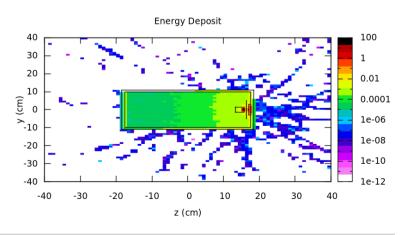

Misure di rumore e filtraggio digitale

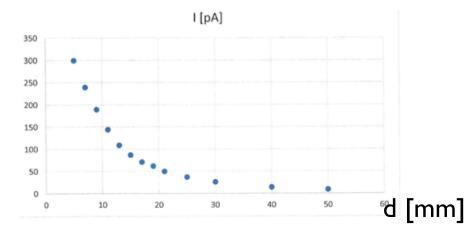
Picoamperometro AH501 (da Elettra)

Livello rumore ≈ pA (50 Hz e multipli)


Riducibile con filtraggio digitale (running avg)




Caratterizzazione dei sensori scCVD (2014)


Elettroni singoli, I-2 MeV (MIP): Landau peak vs HV

Sorgente puntiforme Sr90, attività 3.2 MBq, a diverse distanze confronti con simulazioni FLUKA, studi di riproducibilità

Electronics: preliminary specs

For each of the 4 input channels (diamond sensors)

Individual HV supply

Effective bandwidth: 100 kHz (matched to 1 revolution = 10 μ s)

Selectable current range: 0-50 μ A or 0-2 mA

16 (24?) - bit ADC; over-sampling possible with freq > 100 kHz

4 circular data buffers, updated every 10 μ s:

"Raw data" and 3 levels of "sliding sums" over programmable numbers of cycles

digital filtering levels and time responses, from "immediate" (10 us) to "very slow" (typically 1 s)

4 levels of abort signals

from the comparison of raw data and sliding sums with the programmable thresholds, selected according to a "SuperKEKB Status Register"

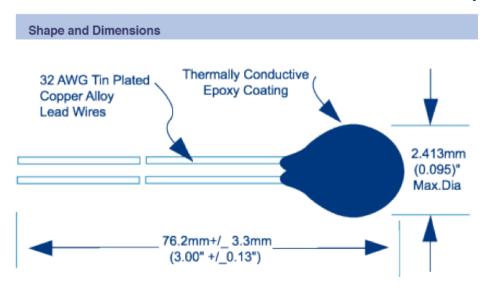
Approach similar to FermiLab Beam Loss Monitor (BLM) and CERN LHC BLM systems

Specifications discussed within Belle II and with SuperKEKB

In collaboration with G.Cautero, D.Giuressi, and R.H.Menk from Elettra - Sincrotrone Trieste S.C.p.A.

NTC temperature sensors

At least $28 \times 2 = 56$ NTC thermistors; system design for up to 96

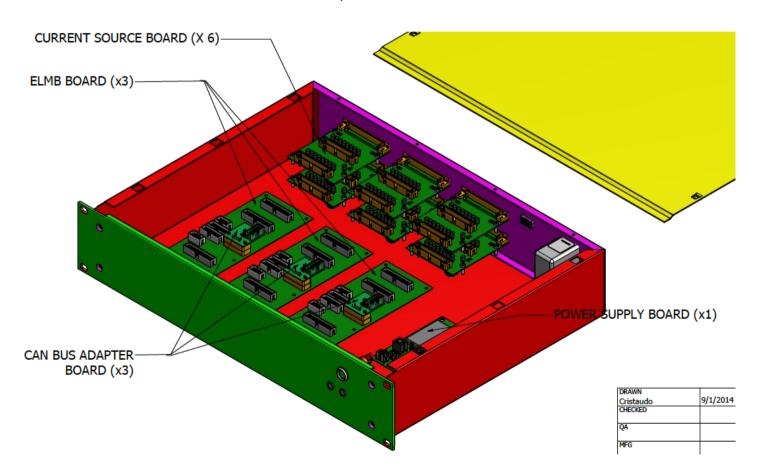

12 sensor pairs attached to the 12 half-rings supporting the SVD ladders

16 sensor pairs on the inlets and outlets of the CO_2 cooling pipes

A few positioned near fibers for cross-calibration, and possibly at other locations

Rad-hard Betatherm $100k\Omega$ NTC thermistors

2 borrowed from CMS, 100 more already procured liquids).


Features

- *Fast time response (1 second typical in liquids).
- *DC (Dissipation Constant) = 0.75 mW/
 C typical in still air at 25°C.
- Available in custom probe assemblies.
- *Tight tolerance available +/- 0.1°C from °C to 70°C
- Proven Stability and Reliability.
- *Min./Max Temperature Exposure = -80°C to +150°C.
- Alloy lead wires for reduced thermal conductivity ("stem effect").

System design for 96 NTCs

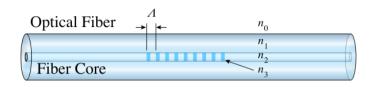
In one box, with 3 x 32 NTC channels modularity:

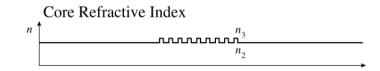
I power supply board, 3 motherboards with ELMB and CANbus adapter, 3×2 current source boards, $3 \times 2 \times 16$ -channel connectors

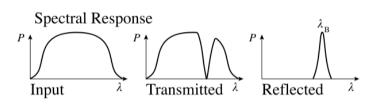
Temperature Monitoring – FOS fibers (2014)

PXD FOS R&D completed successfully tested at the DESY beam test Jan 2014

Same solution can be adopted for SVD: one fiber per ladder, inserted in the Airex foam, to measure silicon temperature.


One FBG temperature sensor for each of the SVD


strip sensors in layers 4,5,6; 38 fibers and 120 sensors are needed.


One rack-type sm225-800 interrogation unit*, ten passive couplers** 4x1 in order to have 40 channels.

*Interrogation speed 0.5 Hz; Stability 0.1 °C pm; Repeatability 0.1 °C; Accuracy 0.1 °C (only for the interrogation unit, FBG sensor error must be added); 16 input channels

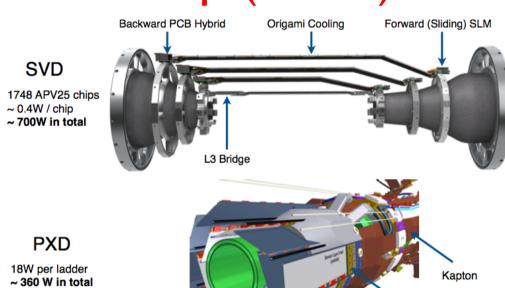
**Accoppiatore a larga banda, Ix4, I550 nm, insertion loss <7 dB, fibra SMF-28e, pigtail lunghezza I m tipo 900 micron loose, connettori FC/APC su entrambe le estremità, dimensioni (forma cilindrica) 4x65 mm.

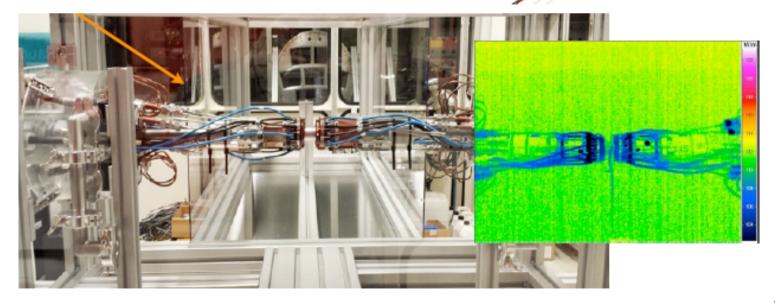
model	Description	cost	Quantity	total
sm230-800	FBG interrogation unit	24,836 €	1	24,700 €
	4x1 passive coupler	45 €	10	450 €
_			total	25,350 €

	Description	Nº of fibers	Total
layer 4	2x10 mm FBG in each fiber up to 3 m length	10	3,120€
layer 5	3x10 mm FBG in each fiber up to 4 m length	12	4,050€
layer 6	4x10 mm FBG in each fiber up to 5 m length	16	7,320€
		Total	14,490 €

Humidity Monitoring & Interlocks

Two types of sensors:

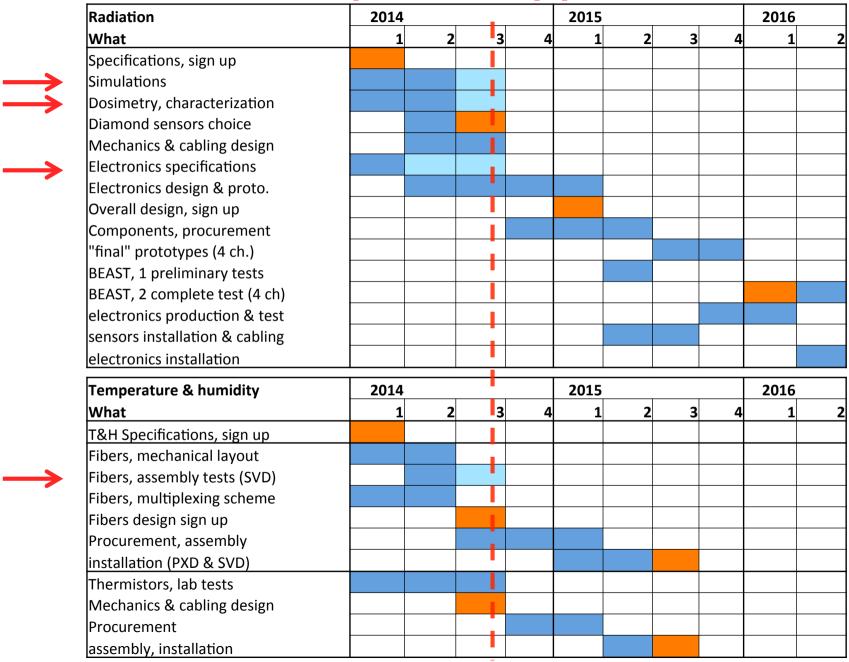

- 8 FOS fibers
 - humidity-sensitive coating,
 - read-out: together with temperature-sensing fibers
- sniffing pipes with external Chilled Mirror Hygrometers
 - good precision and reliability for Dew point limit @ -30 degrees Celsius
 - details (piping, valves, etc.) to be defined


(reference: LHC experiments, for instance CMS tracking upgrade)

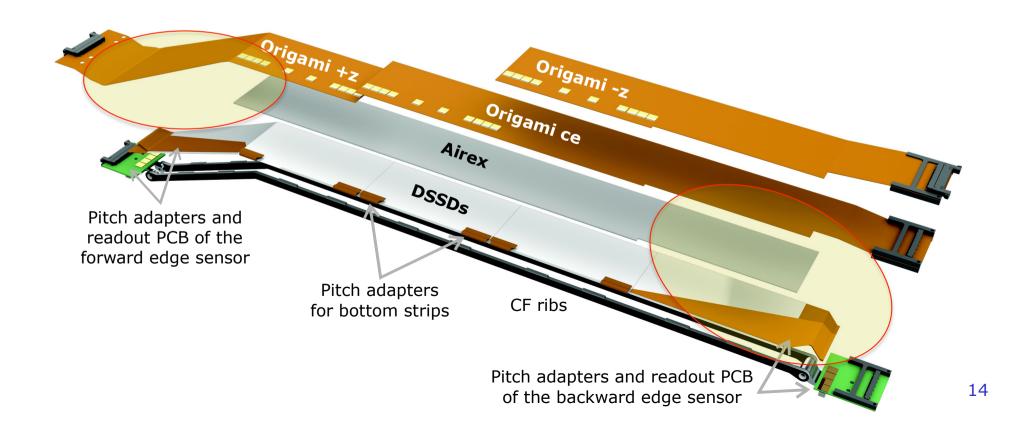
VXD Thermal mock-up (DESY)

PXD+SVD Front End power dissipation: 360+700 W CO₂ cooling pipes (-20°C); dry air / nitrogen flow (20°C)

A crucial moment for understanding several aspects and setting the exact location for the ambient sensors will be the PXD+SVD thermal mock-up in preparation at DESY (Oct. 2014).



DCD/DHP


Sensor/Switcher

Profilo temporale approssimativo

SVD-PISA: Forward/Backward Assembly

- Produce single-sensor subassemblies of the forward and backward sensors.
- · Connect sensor to pitch adapter, pitch adapter to hybrid
- Ship the tested sensor sub-assembly to the module assembly sites

Status of the FW/BW tools

 Build the L4-5-6 BW and FW assembly (i.e. glue the PA to det's and hybrids and u-bonding) and do their electrical characterization.

Review FW/BW Assembly Procedures & updates on jigs status, gluing & bonding tests, teststand.

 Safely shipment of the BW/FW assemblies to ladder production sites and sustain a proper production rate

Multi Purpose jig designed for shipment (bonding & testing during assembly in Pisa).

 Align the BW/FW on the assembly bench(es) and go back in stream with the original procedures

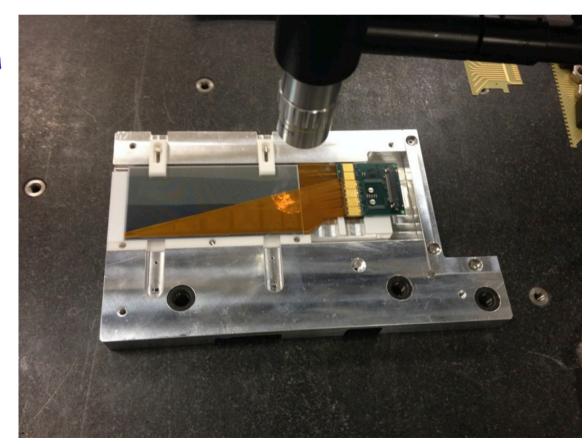
Modified $xyz-\theta$ stage built to safely align the BW/FW subassembly with the other detectors on the bench masks

The mod. xyz-theta stages

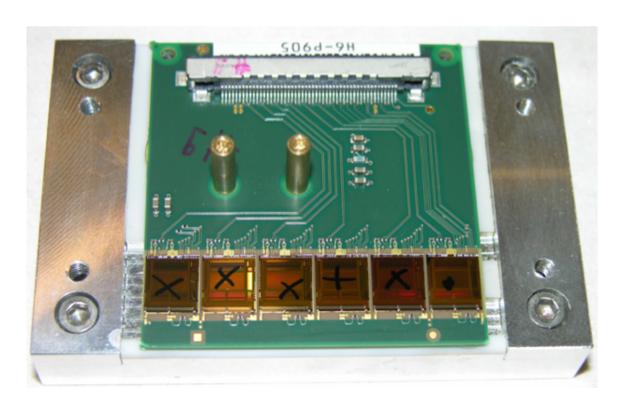
One (BW stage) tested OK @ IPMU in June.

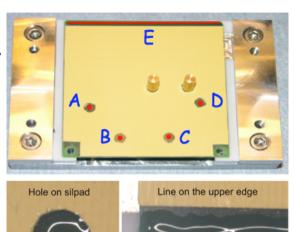
 The remaining 3 stages (2FW + 1BW) have been produced, assembled, calibrated and shipped to the assembly sites at

the end of July.


calibration under the CMM

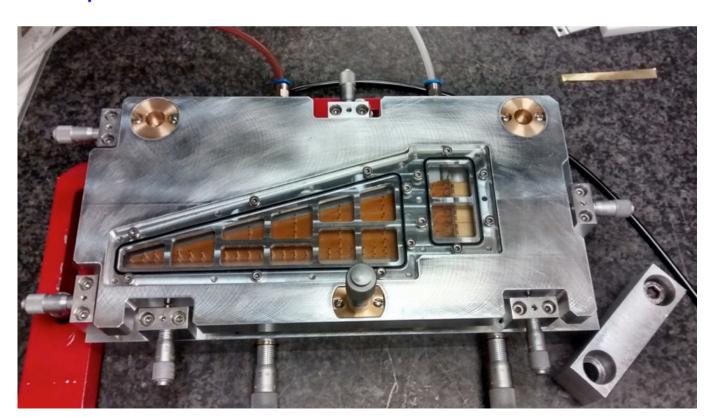
MPC with BW mechanical Assembly


Shipping test successfully done:


- ·under survey before shipping
- Travel inside a box as a hold luggage
- Minor modificationneeded to couple withthe transfer jig
- No movement (<3um)recorded atdestination

Hybrid gluing mask

- Single face L4-5-6 hybrids are equipped with chip, ubonded by Vienna and sent to Pisa.
- The double faced hybrid is assembled by inserting 4 glue dots and 1 line into the SilPad interposer (electrical insulator, thermal conductor), stuck on the n-side.
- The goal is to reach uniformity in thickness.
- Already produced 3FW+3BW (class C) + 1 BW class B double-face hybrids.



Test of the BW gluing jigs

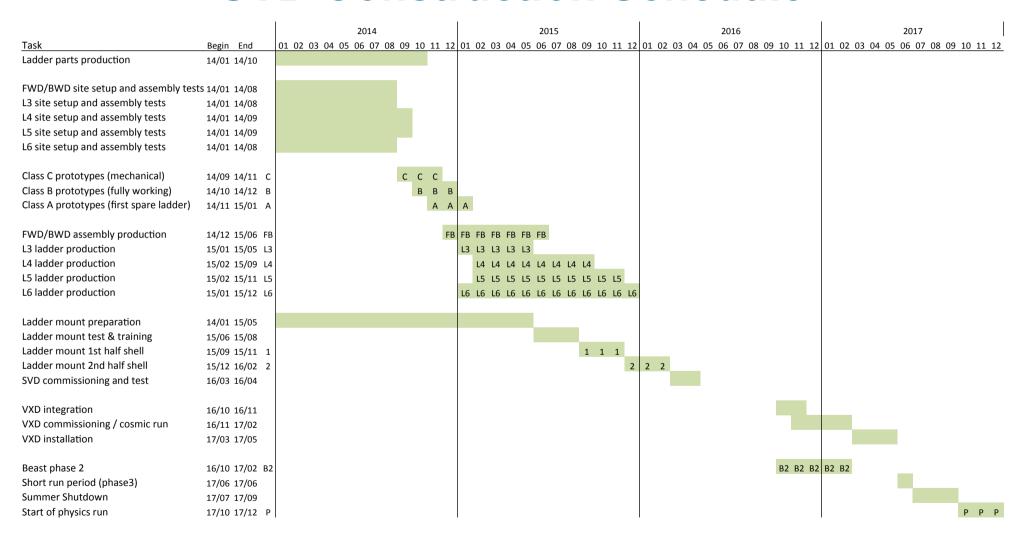
- Realized the BW-z PA chuck and a first gluing on the detector successfully done, proving its functionality.
- Produced and bonded the 1st BW class C assembly
- The 2nd one ready this week.
- Then pass to build the class B BW.

BW PA Z chuck (definitive)

- The PA chuck has been design and machined to allow a planarity of about 20 um over the whole area of the PA (« glue line height).
- · The detector is placed in position by mechanical stops.

 The towers of the detector and the hybrid are raised to reach the PA (held by vacuum) and squeeze the glue. The PA has the border (~1.5 mm) left free, to prevent the glue climbing and spreading between the

PA and the chuck.


• Gluing has been successfully realized and the feature of the ZPA chuck adopted also for the phi chuck.

SVD Construction Schedule

The production of FW/BW sub-assemblies will extend up to the summer 2015

FW/BW production schedule 2014

- July August
 - Complete the production of the remaining assembly jigs and verification
 - Verification of assembly procedure with final jigs
- September
 - Assembly of Class C set (3FW+3BW modules) and pre-prod. components, with bonding → shipment to assembly sites Beginning of October
 - Testing of Hybrid board & gluing p and n sides
- October
 - Assembly of Class B set (3FW+3BW modules) electrically functioning, low-quality parts → shipment to assembly sites End of October
- November
 - Assembly of Class A set (3FW+3BW modules) final components,
 electrically functional, high-quality parts → shipment End of November
- December: start of FW/BW production (2 FW + 2 BW / week)

FW/BW assemblies delivery plan for the SVT qualification sites and BPAC review (nov. 2014)

For the Pisa pre-qualification (BW only):

(Oct. 4th)

Assembly	Class C	Class B
BW	yes	yes
FW	hopefully	NO

- The 2 BW class C assemblies for IPMU and TIFR
- The 1! BW class B assembly for Vienna

Fabricated with final procedures and jigs.

For the qualification of other sites:

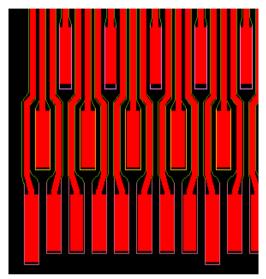
- The FW assembly must be fabricated with temporary jigs
- We plan to produce one class C and one class B by Oct. 15th: in time for IPMU prequalification and L5 class B module.
- We are not sure to be able to assemble another Class C for TIFR in time for pre-qualification

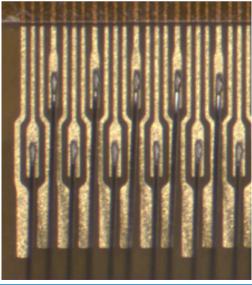
→ it can be available in late October.

October.	Ladder	BW	FW
Test-Beam	L5 (Class B)	4-Oct	15-Oct
pre-qual. IPMU	L6 (Class C)	4-Oct	10-Oct
pre-qual. TIFR	L4 (Class C)	4-Oct	hopefully

dates: ready in Pisa

•23




3-Row Pitch Adapter

- Specification
 - Single-layer flex circuit
 - New Idea: Split inner row of bond pads into
 2 rows → 3 rows of bond pads in total
 - 3µm Ni plating
 - Bond pad width:

	inner row	middle row	outer row
design	40µm	49µm	50µm
measured	34µm	45µm	42µm

- First samples received end of May
 - Pad width of inner row at the lower limit (~34μm)
 - Good wire bonding results
 - Yield ~20 % → acceptable

Unexpected failure on the cooling system of the clean-room

- At the re-opening of the Institute (25/9) a major problem arose in the clean-room (~600 m²) forced air system:
 - The heat exchange system experienced a serious failure, preventing the operation of the clean room at the nominal conditions (21°C, 50% RH);
 - The filtering system was not affected
- The maintenance company was soon called and they spotted the failure of the cooling circuit of the refrigerator system.
- Since 25 Aug. the temperature inside is $29 \rightarrow 32$ °C and RH is $80 \rightarrow 90\%$. The activities in the C.R. stopped:
 - not possible a long stay inside for operators
 - glue behavior (viscosity, curing time) quite different
- Short term solution: use the cold water of the general air-cooling system of the buildings.
- A major maintenance work is foreseen to replace many parts of the cooling system (long term and definitive solution). Major/special request of funds to INFN giunta.
- Despite our efforts to minimize the production downtime to the closing period of the institute, the unexpected cooling problem affected the scheduled works, causing a delay of about one week.

New Power Supplies Option

- Desire to replace the Kenwood Power Supplies
 - More than 10 years old and out of production and maintenance.
 - Little flexibility in granularity because designed for another system
 - o Few HV channels:
 - can become a problem with large and/or non-uniform irradiation.
 - individual sensors going haywire may affect a large group of sensors
- Option to use the CAEN Power system
 - o Keep the basic LV structure:
 - 8 boxes * (6 board/box) * (2 LV/board) = 96 LV with 5V/10A channels
 - o For the HV voltage:
 - 48 HV Channels 100V/1mA, powering each a group of 4 sensors
 - Need fully floating channels that can be referenced to +HV, -HV or GND.
 - Finer granularity would require significant modifications of other electronic boards.

Power Supply System for the Belle-II Silicon Vertex Detector

Technical specifications

INFN - Pisa

Sta partendo la GARA per il Procurement dei Power Supply (finanziamento 115kE)

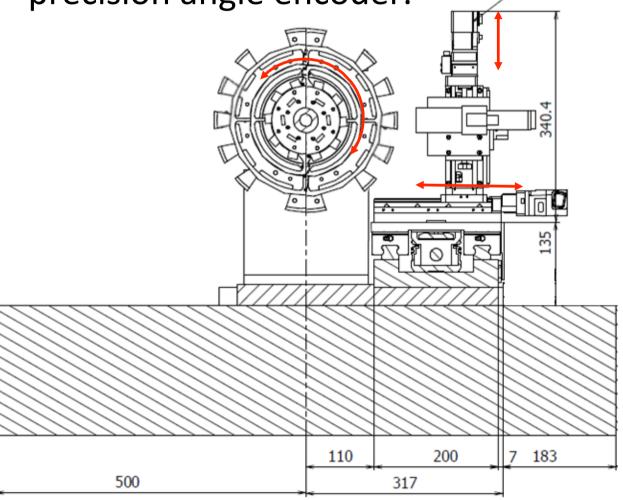
- ·Clausole contrattuali e disciplinare inviato alla giunta per la firma (11/9)
- Subito dopo: lettere di invito alle 5 ditte
- · Gara (< 6 mesi)

Nel 2015:

Commissioning dei Power Supply (x certificazione/verifica del sistema)

3.3. Verification and certification

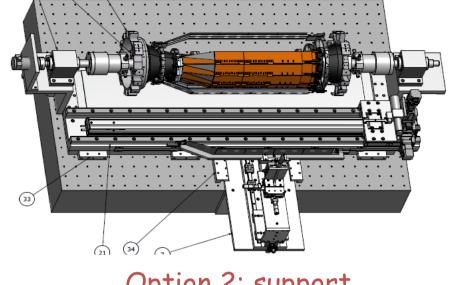
Within 2 months from delivery, the system will be subject to a verification and certification by INFN personnel, who will test the system against the stated specifications. Only the positive verification and certification will authorize the full contract payment by INFN.



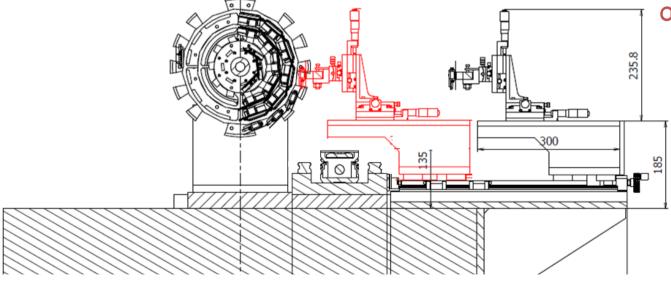
The VXD assembly table (2015)

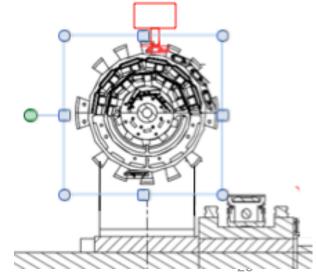
 The SVD support accuracy will be surveyed with an engineering microscope on a XYZ sliding rail and a high-

precision angle encoder.



Model	SOD10X
Magnification	x10
Work distance	55 mm
Resolution	1.5 μm
Field Depth	17 μm
CCD size	1/3"
CCD pixels	640 x 480


Ladder mount


Clearance between modules:
 Less than 1 mm!

Option 1: hold ladders with arm and approach to the end rings by side, insert pins of ladders to the positioning holes.

Option 2: support ladders from top using a sliding guide in vertical direction.

Our concept

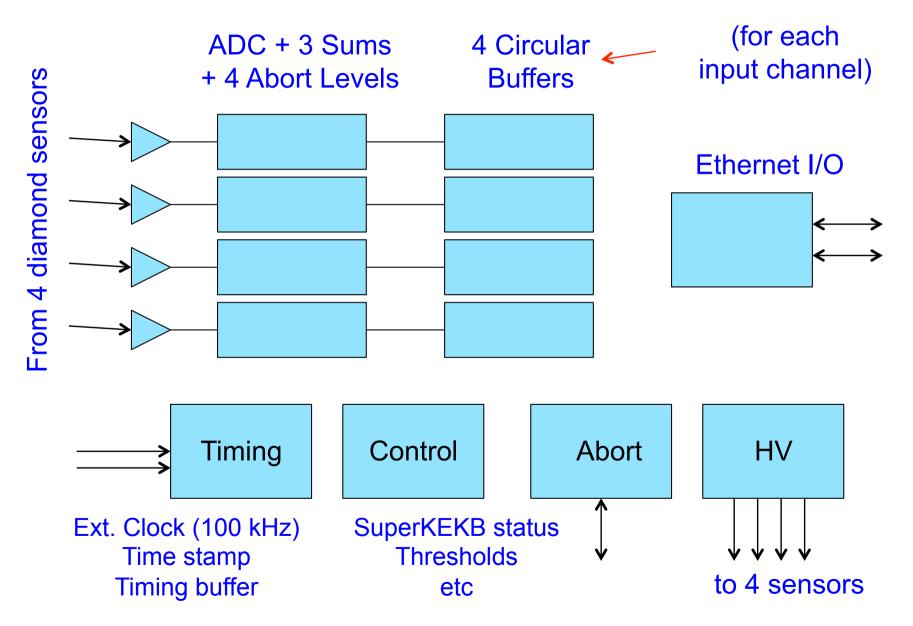
- According to our (BaBar-SVT) experience, this is the approach we want to implement:
 - Put the ladder from top, safely held by an arm at the ends.
 - Lower the arm acting on a precise (motorized) actuator, able also to provide a small rotation (pin-wheel geometry)
- The system can be mechanically designed/realized/tested at home, reproducing the essential features on a mock-up and then shipped to KEK.

SVD	PI	consumo	Α	meccanica per il posizionamento ladders sui coni	25
SVD	PI	consumo	Α	mock-up coni e cooling rings per test posizionamento	10
SVD	PI	missioni	D	1 contatto/prep.installazione moduli 2kE x 2 pers (incl. tecnici)	4

Richieste 2015 SVD

Sys	Sede	Capitolo	Categoria	Descrizione	Richiesta
SVD	TS	missioni	Α	2 x SVD workshop (2kE) x 2 persone	8
SVD	TS	missioni	Α	2 x preparazione/installazione sensori FOS 2kE x 2 pers. (incl. tecnici)	6
SVD	TS	missioni	Α	0.5 M.U. beam test DESY 2015	3
SVD	TS	missioni	D	2 M.U. monitoring radiazione a KEK, BEAST fase 1	12
SVD	TS	missioni	С	Coordinamento monitor radiazione e ambientale VXD	2
SVD	TS	consumo	Α	contributo consumi e manutenzioni, laboratorio elettronica e officina mecc.	3
SVD	TS	consumo	Α	primi prototipi elettronica (radiation monitor e beam abort)	4
SVD	TS	consumo	Α	prototipo interlock temperatura basato su NTC thermistors	2
SVD	TS	consumo	Α	cablaggi e meccanica per radiation monitors BEAST fase 1	2
SVD	TS	consumo	Α	consumi per beam test	2
SVD	TS	apparati	Α	24 sensori diamante con montaggio, cavi (3m) e connessione ai "docks"	91
SVD	TS	apparati	Α	accoppiatori per fibre FOS	6
SVD	TS	apparati	Α	monitoring umidità	10
SVD	TS	trasporti	Α	spedizione sensori monitor e cavi	2
SVD	PI	missioni	Α	2 SVD workshop 2kE x 4 pers	16
SVD	PI	missioni	D	Installazione/collaudo Power Supply a KEK (2 pers. a 2 kE)	4
SVD	PI	missioni	Α	1 M.U. beam test Desy 2015	6
SVD	PI	missioni	D	1 contatto/prep.installazione moduli 2kE x 2 pers (incl. tecnici)	4
SVD	PI	missioni	D	3 M.U. per installazione moduli	18
SVD	PI	trasporti	Α	spedizioni FW/BW	10
SVD	PI	trasporti	Α	spedizione meccanica tools di posizionamento ladders	2
SVD	PI	consumo	Α	consumabili di laboratorio	8
SVD	PI	consumo	Α	contributo manutenzioni laboratorio	5
SVD	PI	consumo	Α	meccanica per il posizionamento ladders sui coni	25
SVD	PI	consumo	Α	mock-up coni e cooling rings per test posizionamento	10
SVD	PI	missioni	С	Coordinamento SVD	5

UPDATE PIANO COMPLESSIVO VXD


SUBSYTEM	ITEM	Sede	CAT	TOTAL	2013	2014	2015	2016	2017	2018
VXD	Monitor radiazione (diam. and electronics)	TS	CORE	142	2	11	100	29		
VXD	Monitoring T/Hum & controlli	TS	CORE	67.5	0	20.5	13	34		
VXD	Misura sensori wedge	TS	ATTR	2.5	2.5	0	0			
VXD	Missioni per installazione + running	TS	MISS	91		9	28	18	18	18
VXD	Missioni per Testbeam	TS	MISS	3	0	0	3			
VXD	Spedizione sensori	TS	TRASP	4		2	2			
VXD	Consumi, manut. lab. e off mecc.+beam- test	TS	ATTR	5	0	0	5			
VXD	Jigs per assemblaggio	PI	ATTR	60	30	30				
VXD	Setup teststand	PI	ATTR	6	6					
VXD	Sensor assembly shipping boxes	PI	ATTR	25		25				
VXD	Spedizione	PI	TRASP	17		5	12			
VXD	Lab: calibrazione e aggiornamento Mitutoyo di misura	PI	ATTR	10	10					
VXD	Lab: consumi costruzione	PI	ATTR	10	5	5				
VXD	Materiale per prototipi meccanici	PI	ATTR	5	5					
VXD	Power supplies	PI	CORE	115		115	0	0		
VXD	Collaudo Power supplies	PI	MISS	4			4			
VXD	Contributo systema cooling	PI	CORE	20		20				
VXD	Meccanica ladder mounting	PI	CORE	25			25			
VXD	Mock-up coni e cooling rings	PI	ATTR	10			10			
VXD	Missioni per Testbeam	PI	MISS	19	7	6	6			
VXD	Missioni per installazione + running	PI	MISS	164	0	18	38	36	36	36
VXD	Missioni coordinamento	PI	MISS	20	0	0	5	5	5	5
VXD	TOTALE VXD BASE			825	67.5	266.5	251	122	59	59

BACK-UP SLIDES

Belle II SVD – Trieste

- Test sensori DSSD, Micron e HPK
- Radiation Monitoring e Beam Abort
 - Sensori diamante scCVD: caratterizzazione, meccanica, cablaggi
 - Elettronica
- Temperature Monitoring & Interlocks
 - NTC thermistors, read-out basato su ELMB
 - FOS fibers
- Humidity Monitoring & Interlocks
- Attività a Trieste, in sintesi
 - Persone, responsabilità, richieste finanziarie per il 2015
 - Profilo complessivo di spesa

Rad.Mon+Abort, 4-channel module

Profilo di spesa (Trieste)

Item	2013	2014	2015	2016	тот
Initial CORE	5	75	70	0	150
DSSD tests	2.5	0	0	0	2.5
Rad.Mon.+Abort (diamonds, cables, etc)	2	7	96	10	115
Rad.Mon.+Abort (electronics)	0	4	4	19	27
Temperature Mon. (FOS fibers, offers)	0	17.5	I	30	48.5
Temperature Mon. (NTC thermistors)	0	3	2	4	9
Humidity Mon. (very preliminary)	0	0	10	0	10
TOTAL	4,5	31.5	113	63	212

Note (dettagli disponibili su uno spreadheet separato):

- 1) Non inclusi: alcuni prototipi e materiale inventariabile su altri fondi
- 2) Acquisto di 24 sensori diamante scCVD nel 2015
- 3) Spesa imprevista nel 2014, non inclusa: rifacimento dell'impianto di condizionamento della clean room; 2.4 keuro

ELMB-based read-out

ELMB boards, widely adopted at CERN

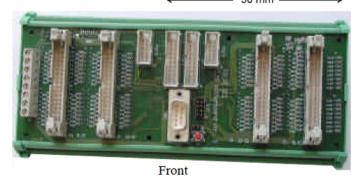
64 chan. MUX, 16 bit ADC; CANbus read-out, CANopen read-out protocol

Present status:

One ELMB board, borrowed from CMS

2 motherboards and 10 adapter minicards, fabricated based on public CERN design

Read-out via CANbus interface


Software packages: installed

LabView test programs: developed and running

Back

Belle II – Trieste in sintesi

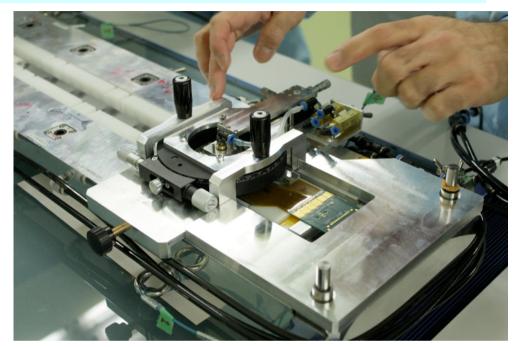
Partecipanti

- L. Bosisio 60%
- L.Lanceri 90%
- L.Vitale 90%
- G.Cautero (Elettra) 10%
- D.Giuressi (Elettra) 10%
- H.Menk (Elettra)10%

Richieste ai servizi

- Elettronica: 18 m.u.
- Meccanica: 8 m.u.

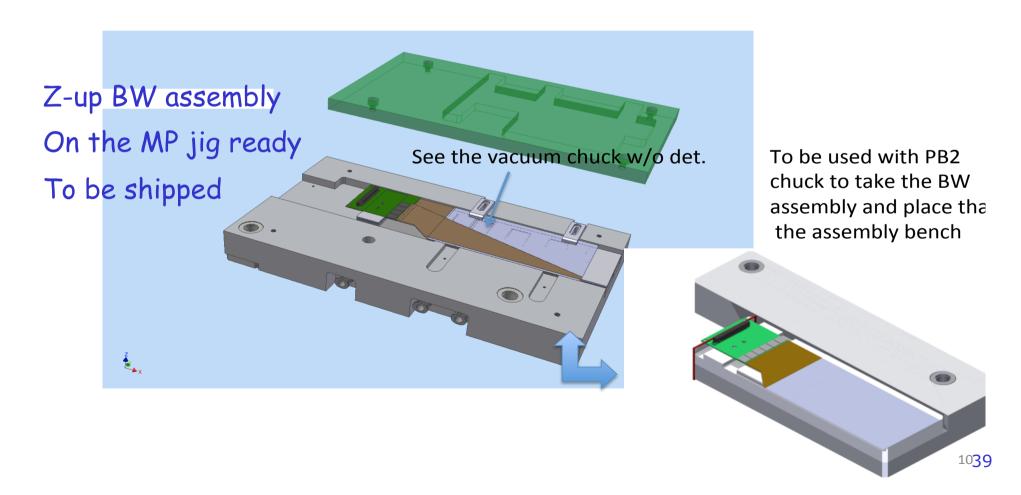
Responsabilità hardware

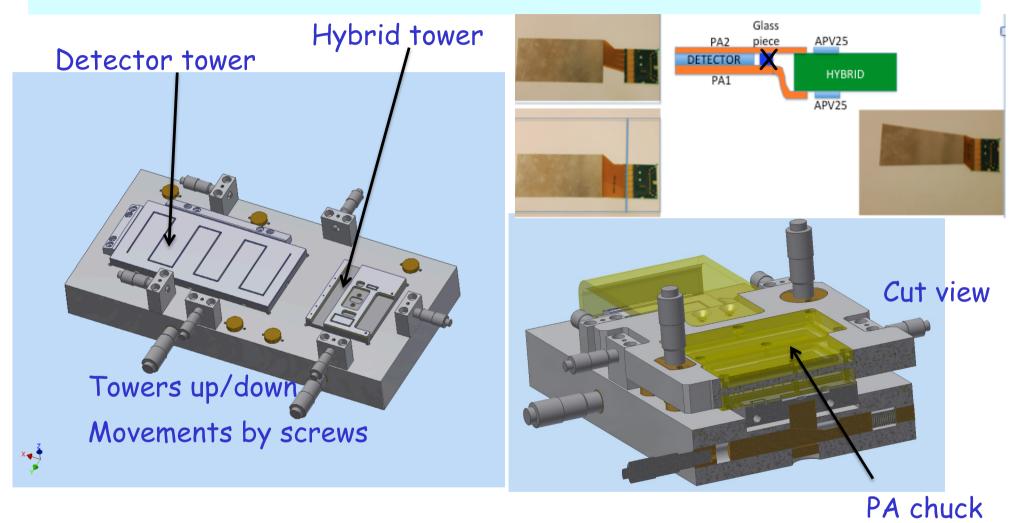

- Test sensori microstrip, da Micron e HPK
- Per VXD = PXD + SVD monitor radiazione e trigger per beam abort
- Monitor e interlock SVD, temperatura e umidità

Preventivi 2015

- Missioni 49 kEuro
- Consumi 17 kEuro
- Apparati 107 kEuro
- Trasporti2 kEuro

Modified xyz0 stage test @ IPMU


- Successful test done during the B2GM at IPMU to check the functionality of the jig on the real ladder bench mask and look for possible interference.
 - 1. Test angle alignment capability
 - 2. Test capability of positioning to nominal position
 - 3. Test position when assembly is dropped.


- The jig has demonstrated very good alignment capabilities, it is mechanically compatible with the real bench mask and adds some safety features
 - Minor modifications to improve usability
 - Small rotation in dropping from 250um but (displacement from nominal position ~ 5-15 um is acceptable)
 - No need for bridge to hold the hybrid, since sensor chuck is strong enough.

Multi Purpose jig

- The MP jigs are used for bonding/testing & rework operation on both sides.
- It has a holder in which to insert a teflon chuck that can be both phi or z up;
 the detector can be held with clamps and vacuum.
- The MP jig is also used for the final shipment of the BW/FW subassembly to the ladder construction sites with an appropriate cover.

The final design of the Gluing jig (BW-phi)

Other (similar) 3 jigs are required for BW-z, FW-phi and FW-z.

Milestones

- July 2014
 - Finishing L4-L6 hybrids assembly
 - Delivery of first 3-row pitch adapters (all variants)
- August 2014
 - Finishing L3 hybrid assembly
 - Finalizing assembly sites preparation
- September 2014
 - Class C prototype of FWD/BWD modules and L3 ladder
 - First version of construction database
- October 2014
 - Production of class C prototypes
 - Class B prototype of FWD/BWD modules and L3 ladder
- November 2014
 - Production of class B prototypes
- December 2014 February 2015
 - Start of ladder production

FW/BW assembly plans 2014

- For BW modules we have the final jigs and we can assemble both class C and B in September as planned
- For FW modules we rely on temporary jigs
 - Not good for Pisa site qualification but needed to allow other sites to proceed and to produce class B module for the beam-test
 - Slower and less accurate procedures
- Still, the FW and BW MP chucks are necessary for wirebonding/testing and shipping