Minimal defect production vs Kibble-Zurek Mechanism

Rosario Fazio

Scuola Normale Superiore, Pisa - ITALY & NEST, Istituto di Nanoscienze-CNR, Pisa - ITALY

ADIABATIC DYNAMICS

ADIABATIC DYNAMICS

There are cases in which the minimum gap closes in the thermodynamic limit: *"failure" of the adiabatic regime*

Adiabatic dynamics across critical points: Kibble-Zurek mechanism for defect formation

Adiabatic quantum computation

Quantum state preparation

Here we want to stay always in the ground state

ADIABATIC QUANTUM COMPUTATION

 \mathcal{H}_{i} The ground state is known

 \mathcal{H}_f The ground state is the solution to our problem

ADIABATIC QUANTUM COMPUTATION

OUTLINE^(*)

• Kibble-Zurek mechanism

- Optimal control in many-body systems
- Transitionless quantum driving

(*)-From now on only gaps closing as power laws

IN COLLABORATION WITH

- Tommaso Calarco, Tommaso Caneva, Simone Montangero
- Giuseppe Santoro
- Mauro Paternostro, Gabriele De Chiara, Steve Campbell
- Massimo Palma

Ulm University

SISSA (Trieste)

The adiabatic approximation breaks down when $\frac{\lambda}{\lambda} \sim \tau$ $\hat{\xi}$ controls the density of defects which will be left after crossing the critical point

 $\rho_{def} \sim \hat{\xi}^{-d} \sim v^{\frac{d\nu}{z\nu+1}}$ $\mathcal{E}_{res} \sim J \rho_{def}$

-W. Zurek, U. Dorner and P. Zoller (2005) - A. Polkovnikov (2005)

Landau-Zener problem

 $p_{LZ} \sim e^{-\frac{\pi\Delta}{2\hbar v}}$

Estimate the the minimum length of the system "defectfree".

From here one can estimate the density of defects (in agreement with previous scaling)

-D. Sen, K. Sengupta, and S. Mondal (2008)

Is it possible to minimize the defect production on crossing a phase transition?

Optimal control applied to defect formation across a QPT

- T. Caneva, T. Calarco, R. F., G.E. Santoro, and S. Montangero (2011)

OPTIMAL DYNAMICS: A CARTOON

Slow

Fast

Adiabatic strategy

Optimal control

THE MODELS

ID Ising model

 $\mathcal{H} = \sum_{i} \sigma_{i}^{x} \sigma_{i+1}^{x} + \lambda(t) \sum_{i} \sigma_{i}^{z}$

$\mathcal{H} = \frac{1}{N} \sum_{i < j} \sigma_i^x \sigma_j^x + \lambda(t) \sum_i \sigma_i^z$

THE MODELS

Grover search model $\mathcal{H} = [1 - \lambda(t)](1 - |s\rangle\langle s|) + \lambda(t) |\bar{\psi}\rangle\langle\bar{\psi}|$

Landau-Zener problem

 $\mathcal{H} = \lambda(t)\sigma^x + \omega\sigma^z$

A "MEASURE FOR DEFECT FORMATION"

The infidelity

$I(T) = 1 - |\langle \psi_G | \psi(T) \rangle|^2$

MINIMAL DEFECT FORMATION

- T. Caneva, T. Calarco, R. F., G.E. Santoro, and S. Montangero (2009)

- T. Caneva, M. Murphy, T. Calarco, R. F., S. Montangero, V. Giovannetti, and G.E. Santoro (2009)

QUANTUM SPEED LIMIT

Time-independent case

 $|^{2}|\Psi
angle$

Levitin (1998)

Determine the Minimum time required for a quantum state to evolve to a different one placed at a certain distance from it.

$$E = \langle \Psi | H | \Psi \rangle \qquad \Delta E = \sqrt{\langle \Psi | (H - E)^2 | \Psi \rangle}$$
Initial energy Initial state Energy variance
$$T^* = \max\left(\alpha(\epsilon)\frac{\pi}{2E}, \beta(\epsilon)\frac{\pi}{2\Delta E}\right) \qquad \stackrel{\text{-T. K. Bhattacharyya (1983)}}{= \text{P. Pfeifer (1993)}}$$

$$-\text{T. K. Bhattacharyya (1983)}$$

$$-\text{P. Pfeifer (1993)}$$

$$-\text{N. Margolus and L.B. Levitin (1998)}$$

$$-\text{V Giovannetti, S Lloyd, and L Maccone (2003)}$$

$$-\text{A. Carlini et al (2006)}$$

MINIMAL DEFECT FORMATION

- T. Caneva, T. Calarco, R. F., G.E. Santoro, and S. Montangero (2009)

Comparison of optimized and non-optimized evolutions

 T^* minimum time to achieve infidelity $I \sim 10^{-3}$

- Linear: scaling with N

- Optimal: motion along the geodesic at constant speed

MINIMAL DEFECT FORMATION

- T. Caneva, T. Calarco, R. F., G.E. Santoro, and S. Montangero (2009)

COMPLEXITY OF CONTROLLING A MANY-BODY CRITICAL SYSTEM?

TRANSITIONLESS QUANTUM DRIVING

Demirplak and Rice (2003) Berry (2009)

Requirement

 $|\psi_0[\Gamma(t)]
angle$ ground state of H

 $\tilde{H} = H + \delta H$

$$\delta H = i \sum_{n} [|\partial_t n\rangle \langle n| - \langle n|\partial_t n\rangle |n\rangle \langle n|]$$

Experimental implementation M. Bason et al (2011) (Pisa group)

TRANSITIONLESS QUANTUM DRIVING THROUGH A CRITICAL POINT

A. del Campo, M.M. Rams, and W.H. Zurek (2012) S. Campbell, G. De Chiara, M. Paternostro, G.M. Palma, and R.F. (2014)

$$\delta H = i \sum_{n} [|\partial_t n\rangle \langle n| - \langle n|\partial_t n\rangle |n\rangle \langle n|]$$

One-dimensional Ising model A. del Campo, M.M. Rams, and W.H. Zurek (2012)

$$\delta \mathcal{H} = \sum_{i} \sum_{m < \xi} g(m) \sigma_{i}^{\alpha} \sigma_{i+1}^{\beta} \dots \sigma_{i+m}^{\delta}$$

Complexity increases at the critical point

TRANSITIONLESS QUANTUM DRIVING THROUGH A CRITICAL POINT

S. Campbell, G. De Chiara, M. Paternostro, G.M. Palma, and R.F. (2014)

 $\mathcal{H} = \frac{1}{N} \sum_{i < j} \sigma_i^x \sigma_j^x + \lambda(t) \sum_i \sigma_i^z$

Despite the correlation length being always infinite the closing of the gap at the critical point makes the driving Hamiltonian of increasing complexity also in this case.

TRANSITIONLESS QUANTUM DRIVING THROUGH A CRITICAL POINT

S. Campbell, G. De Chiara, M. Paternostro, G.M. Palma, and R.F. (2014)

Holstein-Primakov transformation — Mapping onto free bosons

$$\delta \mathcal{H} \sim \frac{1}{N \mid \lambda - 1 \mid} \sum_{i < j} \left[\sigma_i^x \sigma_j^y + \sigma_i^y \sigma_j^x \right]$$

Divergence at the critical point

- Optimal control may require "complex" pulses (robustness towards pulse deformation)
 - Superadiabatic dynamics requires multi-spin interactions

SUMMARY

Minimal defect formation by optimal quantum control

Quantum speed limit related to the minimum gap

Simple description in terms of two-level dynamics

Thank you for the attention!