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There are cases in which the 
m i n i mu m g a p c l o s e s i n t h e 
thermodynamic limit:	

“failure” of the adiabatic regime

ADIABATIC DYNAMICS

Adiabatic dynamics across critical points: 
Kibble-Zurek mechanism for defect formation	


Adiabatic quantum computation	


Quantum state preparation
]Here we want to stay 	


always in the ground  state
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The ground state is known

The ground state is the solution to our problem
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ADIABATIC QUANTUM COMPUTATION
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Abstract.

I. INTRODUCTION

FIG. 1: Schematic representation of the Nelder-Mead di-

rect search algorithm. Using hyper-polygons in the multi-

dimensional parameter-space a path toward the minimum

value is searched.

II. MODELS AND OPTIMIZATION

We are addressing the Bose-Hubbard model which is
described by the Hamiltonian
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J denotes the particle hopping between neighbour-
ing sites, U is the onsite particle-particle interaction
strength, m the mass of the bosons used in the model,
� the wavelength of the laser forming the optical lattice
and ! is the frequency of the harmonic confinement. The
variable i denotes the lattice sites with i0 the site in the
middle of the lattice. The operators b̂ (b̂†) are the bosonic
annihilation (creation) operators with n̂ the number op-
erator.
This model in the homogeneous case (! = 0) exhibits
a second order quantum phase transition at (U/J)c ⇡
3.37 (monien-paper) with a superfluid phase for U/J <

(U/J)c and a Mott-insulator phase for U/J > (U/J)c.
We study this phase transition with DMRG and matrix
product state (MPS) algorithms. The harmonic confine-
ment leads to more complicated features in the phase
diagram throughout the transition (Pupillo-paper). The
chemical potential depends on the distance from the cen-
ter of the lattice. Therefore we see cake-like shapes with
simultaniously appearing superfluid- and Mott-insulator
phases depending on U/J and the number of particles
in the lattice. By ramping up U/J from small values in
the superfluid-regime to very high values we see quasi-
phase transitions to di↵erent cake-like or Mott-insulator
states. We avoid such quasi- transitions by choosing an
appropriate number of particles in a given system with
a well defined lattice spacing and harmonic confinement.
In this way we get a Mott-insulator state with filling one
particle per site in the end of our ramp.
We now optimize the ramp through the phase tran-
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FIG. 2: Parity distribution of the numerical and experimental

results. The left plot shows the results for the fast linear pulse,

the numerical result (filled) compared to the experimental

result (solid line). The right plot shows the numerical results

for the optimized pulse (filled) and the experimental results

for the optimized pulse (solid line) in comparison with the

result of an adiabatic pulse (dashed line).

sition point using the chopped random basis algorithm
(CRAB) (paper). We simulate a Bose-Hubbard model
with 16 particles in a lattice with ! = 2⇡ · 63.5Hz and
� = 1064nm. The ramp will be performed from Vi = 3Er

to Vf = 14Er in To = 11.7ms where good adiabatic re-
sults are obtained in times around Ta = 100ms.
The CRAB algorithm uses a direct search algorithm to
vary a guess pulse by using as parameters the coe�cients
of a truncated Fourier-series. These parameters get ini-
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FIG. 2: Parity distribution of the numerical and experimental

results. The left plot shows the results for the fast linear pulse,

the numerical result (filled) compared to the experimental

result (solid line). The right plot shows the numerical results

for the optimized pulse (filled) and the experimental results

for the optimized pulse (solid line) in comparison with the

result of an adiabatic pulse (dashed line).

sition point using the chopped random basis algorithm
(CRAB) (paper). We simulate a Bose-Hubbard model
with 16 particles in a lattice with ! = 2⇡ · 63.5Hz and
� = 1064nm. The ramp will be performed from Vi = 3Er

to Vf = 14Er in To = 11.7ms where good adiabatic re-
sults are obtained in times around Ta = 100ms.
The CRAB algorithm uses a direct search algorithm to
vary a guess pulse by using as parameters the coe�cients
of a truncated Fourier-series. These parameters get ini-
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This is a very nice picture with few defects after the optimized ramp. 

Post selection 
Here describe the basics about our post selection process on an example image. For 
each repetition of our sequence we get a reconstructed occupancy matrix. In the 
picture, shown on the left, you can see the lattice sites indicated in blue and the 
reconstructed occupied latticed marked with a red dot. The cloud of atoms is fitted 
with an ellipse (blue line). The green points mark lattice sites which are inside this 
ellipse, including small rounding effects. 

We usually concentrate on the central region (grey shaded). The length of the tube is 
defined by the number of site inside the fitted ellipse, shown on  the  left.  This  doesn’t  
have to the same as the distance between the first and the last (shown on the right). 
The transvers could diameter is the maximum of the ellipse, transvers to the 
considered tubes. 

Tube A: 
Length: 16 
Distance between first and last atom: 17 
Atoms: 17 
Holes: 0 
Tube B: 
Length: 16 
Distance between first and last atom: 17 
Atoms: 15 
Holes: 2 
Tube C: 
Length: 16 
Distance between first and last atom: 17 
Atoms: 15 
Holes: 2 
 

Note that the tube between B&C has length of 16 but a distance between first and last 
atom of 19. It has 4 holes inside the ellipse and one more outside.  
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FIG. 1: CRAB scheme: A) An inital guess pulse c0(t) is used
as starting point. B) The function F(ω⃗) for the case ω⃗ =
{ω1, ω2} and the initial polytope (ligh red triangle) are defined
and moved “downhill” (darker triangles) until convergence is
reached. C) The final point is recasted as the optimal pulse
c(t) and applied to the physical system.

integrated with t-DMRG, and thus can in principle be
applied to all systems that can be efficiently simulated
by tensor network methods. Triggered by the observa-
tion that optimal control optmizations result in pulses
with very simple Fourier spectrum [22] we develop an
optimal search in a truncated dual space, the Chopped
RAndom Basis (CRAB) optimization, that can be effi-
ciently applied to t-DMRG simulations. The scenario we
are thinking of is as follows: given a system of interested
described by an Hamiltonian H with some controls cj(t)
with j = 1, . . . , NC , the goal is to extremize a given fig-
ure of merit F [H(cj(t))], e.g. the final system energy,
state fidelity, entanglement, etc. The main idea is then
to start with an initial pulse guess c0

j(t) and then looking
for the best correction of the form

cj(t) = c0
j(t) · fj(t), (1)

where fj(t) can be expressed in a simple form in some
function basis, as for example, Fourier space, and de-
pends on some parameters ω⃗j = ωk

j (k = 1, . . . , Mj), see
Methods for details. The optimization problem is then
recasted in a extremization of a multivariables function
F(ωk

j ) that can be numerically approached with the pre-
ferred method, as for example, stepeest descent or conju-
gate gradient method [25]. While using CRAB together
with t-DMRG, computing the gradient of F is extremely
resource consuming and thus we resort to a Direct search
method as Nelder-Mead or simplex methods [25]. They
are based on the construction of a polytope defined by
some initial set of points in the space of parameters ω⃗j

that “rolls down the hill” following defined rules up to
reach the (possible local) minima (see Fig. 1 and Meth-
ods). Due to the fact that the Direct Search methods
are based on many independent evaluation of the func-
tion to be minimized, they can be efficiently implemented
together with t-DMRG simulations.

In this letter, the CRAB optimization is applied to
the preparation of a Mott insulator in cold atoms exper-
iments in optical lattice [11]. Indeed, very recently this











 






 

FIG. 2: Scheme of the Mott-Superfluid transition in the ho-
mogeneous system for average occupation number ⟨n⟩ = 1:
increasing the lattice (black line) depth V , the atoms Super-
fluid wave functions (upper) localize in the wells (lower). If
the transition is not adiabatic or optimized defects appear
(here represented by a hole and a double occupied site).

field have experienced a fast development after the exper-
imental demonstration of coherent control of the atoms
subject to a parameter quench in the seminal work of
M.Greiner and coworkers [12]. In these experimental se-
tups a Bose-Einstein condensate is first loaded in a mag-
netic trap and then the optical lattice is slowly switched
on inducing a quantum phase transition to a Mott insu-
lator. This is the fundamental initial step to prepare a
one dimensional system for further investigations as for
recent experiments on transport or spectroscopy [11]. Up
to now, the described Superfluid-Mott insulator transi-
tion has been performed adiabatically in about one hun-
dred ms: we present an optimal pulse to obtain a faithful
ground state with density of defects below one per cent
(???) in a total time of the order of some milliseconds.
This new optimal process allows for a drastic reduction
(about two orders of magnitude) of the time needed to
initialize cold atoms in optical lattice in a desired initial
state, a fundamental step in any quantum information
processing and cold atoms in optical lattice experiments.

Cold atoms in opticall lattice can be mapped in the
Bose Hubbard model defined by the Hamiltonian [11, 14]:

H=
∑

j

[−J(b†jbj+1+h.c.)+Ω(j−
N

2
)2nj+

U

2
(n2

j−nj)]. (2)

The first term on the r.h.s. of Eq.(2) describes the tunnel-
ing of bosons between neighboring sites with rate J , Ω is
the curvature of the trapping potential, and nj = b†jbj is
the density operator with bosonic creation (annihilation)
operators b†j (bj) at site j = −N/2, . . . , N/2−1. The last
term is the onsite contact interaction with energy U . The
system parameters U and J can be expressed as a func-
tion of the optical lattice depth V [11]. As sketched in

Preparation of a Mott state



OUTLINE

Kibble-Zurek mechanism	


Optimal control in many-body systems	


Transitionless quantum driving 

(*)-From now on only gaps closing as power laws

(*)
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KIBBLE-ZUREK MECHANISMt
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Figure 1: Characteristic behavior of the relaxation time (a) and the correla-
tion length (b) during a quench. Dashed lines in (a) represent the symmetry
breaking timescale |ϵ/ϵ̇| = |t|. Dashed line in (b) represents the freeze-out
correlation length during the time interval [−t̂, t̂].
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τ

λc λ(t)

H = H0 + �HI

�c = critical point

λ − λc = vt

The adiabatic approximation breaks down when �̇

�
⇠ ⌧

Adiabatic          Frozen           Adiabatic

⇠̂ controls the density of defects which will 	

be left after crossing the critical point



KIBBLE-ZUREK MECHANISM

Eres ∼ Jρdef

ρdef ∼ ξ̂−d
∼ v

dν

zν+1

-W. Zurek, U. Dorner and P. Zoller (2005)
- A. Polkovnikov (2005)



KIBBLE-ZUREK MECHANISM

Landau-Zener problem

pLZ ⇠ e�
⇡�
2~v

Estimate the the minimum length of the system  “defect-
free”. 	

!
From here one can estimate the density of defects (in 
agreement with previous scaling)

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

�



KIBBLE-ZUREK MECHANISM
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-D. Sen, K. Sengupta, and S. Mondal (2008)



Is it possible to minimize 
the defect production 

on crossing a 	

phase transition?



|ψ(0)⟩

|ψ(t)⟩

U(t)

Optimal control applied to defect 
formation across a QPT 

- T. Caneva, T. Calarco, R. F., G.E. Santoro, and S. Montangero (2011)

H = H({dj(t)}, t)
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OPTIMAL DYNAMICS: A CARTOON



THE MODELS

1D Ising model 
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Lipkin-Meshkov-Glick (LMG) model



THE MODELS

H = [1� �(t)](1� | sihs |) + �(t) |  ̄ih ̄ |
Grover search model

H = �(t)�x + !�z

Landau-Zener problem



I(T ) = 1� |⇥�G|�(T )⇤|2

A “MEASURE FOR DEFECT FORMATION”

The infidelity



Linear quench for a 	

“short” time T	


Optimal pulse at time	

T ⌧ Tad

Linear quench in the	

adiabatic limit T ⇠ Tad



An optimized evolution then can be 
interpreted as a uniform motion along 
a geodesic with speed �/T ⇤

MINIMAL DEFECT FORMATION
- T. Caneva, T. Calarco, R. F., G.E. Santoro, and S. Montangero (2009)

There is a minimum time, associated to the quantum 
speed limit, below which the optimization is ineffective	


- T. Caneva, M. Murphy,T. Calarco, R. F., S. Montangero, V. Giovannetti, and G.E. Santoro (2009)



QUANTUM SPEED LIMIT
Time-independent case

Initial stateInitial energy
Energy variance

Determine the Min imum t ime 
required for a quantum state to evolve 
to a different one placed at a certain 
distance from it.

�
in

out
“distance”

- T. K. Bhattacharyya (1983)
- P. Pfeifer  (1993)
- N. Margolus and L.B. Levitin (1998) 
- V Giovannetti, S Lloyd, and L Maccone (2003) 
- A. Carlini et al (2006) 
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Comparison of optimized and 
non-optimized evolutions

minimum time to achieve 
infidelity 

T ⇤

I ⇠ 10�3⇡

- Linear :  scaling with N

- Optimal: motion along the geodesic at constant speed

MINIMAL DEFECT FORMATION
- T. Caneva, T. Calarco, R. F., G.E. Santoro, and S. Montangero (2009)



MINIMAL DEFECT FORMATION

KZ regime

- T. Caneva, T. Calarco, R. F., G.E. Santoro, and S. Montangero (2009)



COMPLEXITY OF CONTROLLING	

A MANY-BODY 	


CRITICAL SYSTEM?



H̃ = H + �H

|�0[�(t)]�Requirement

�H = i
X

n

[|⇥tn⇤⇥n|� ⇥n|⇥tn⇤|n⇤⇥n|]

TRANSITIONLESS QUANTUM DRIVING
Demirplak and Rice (2003)

Berry (2009)

ground state of  H

Experimental implementation M. Bason et al (2011) (Pisa group) 
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TRANSITIONLESS QUANTUM DRIVING	

THROUGH A CRITICAL POINT

A. del Campo, M.M. Rams, and W.H. Zurek (2012)
S. Campbell, G. De Chiara, M. Paternostro, G.M. Palma, and R.F. (2014)

Complexity increases at the critical point

One-dimensional Ising model A. del Campo, M.M. Rams, and W.H. Zurek (2012)
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TRANSITIONLESS QUANTUM DRIVING	

THROUGH A CRITICAL POINT

Despite the correlation length being always infinite 
the closing of the gap at the critical point makes 
the driving Hamiltonian of increasing complexity 
also in this case.
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Lipkin-Meshkov-Glick (LMG) model

S. Campbell, G. De Chiara, M. Paternostro, G.M. Palma, and R.F. (2014)



TRANSITIONLESS QUANTUM DRIVING	

THROUGH A CRITICAL POINT

S. Campbell, G. De Chiara, M. Paternostro, G.M. Palma, and R.F. (2014)

Holstein-Primakov transformation           Mapping onto free bosons
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Divergence at the critical point



“Comparison”

Optimal control may require “complex”pulses 
(robustness towards pulse deformation)	


Superadiabatic dynamics requires multi-spin 
interactions



SUMMARY

Minimal defect formation by optimal quantum control	


Quantum speed limit related to the minimum gap	


Simple description in terms of two-level dynamics



Thank you for the attention!


