Verso soglie più basse: Materia Oscura con CRESST

Paolo Gorla Laboratori Nazionali del Gran Sasso

WhatNext-LNGS october 16, 2014

Outline

- L'esperimento CRESST: ricerca di DM con bolometri scintillanti
- Sensibilità a basse masse
- Nuove strategie per abbassare la soglia
- Prospettive

The CRESST Experiment

Cryogenic Rare Event Search with Superconducting Thermometers

CRESST Detectors

 \rightarrow Phonon channel measures deposited energy with sub keV resolution and accuracy

- → Light channel serves to distinguish types of interaction
- → Types of recoiling nuclei distinguished by different slopes in energy-light plane

CRESST Detectors

 \rightarrow Phonon channel measures deposited energy with sub keV resolution and accuracy

- \rightarrow Light channel serves to distinguish types of interaction
- → Types of recoiling nuclei distinguished by different slopes in energy-light plane

300 g Detector Module

Multielement recoils

- Tungsten dominates at larger WIMP masses due to $\sigma \propto A^2$
- Calcium important around 10 GeV
- For M<10 GeV only oxygen above threshold

 \rightarrow type of recoils, together with the recoil energy spectrum, offers very detailed information on mass of possible WIMP

Results from run 32

10

Extended physics run from June 2009 to April 2011:

- 8 CaWO₄ modules used for Dark Matter analysis •
- Net exposure after cuts: 730 kg days •

- Background only hypothesis rejected with rather high statistical significance (>4 σ)
- Background contributions still relatively large
- Reduction is necessary for ultimate clarification

RESST 10 CRESST 2σ

CRESST 2009

EDELWEISS-II

CRESST 2009 (all nuc.)

CRESST-II Upgrade: Run 33

- Data-taking since July 2013
- 18 modules mounted (~ 5kg)
 - \rightarrow 17 of 18 are fully operational
- ✓ 11 x conventional design (improved)
 - Use of radiopure clamps
 - Radon prevention
- ✓ 6 x fully-active new designs

CRESST-II Upgrade: Run 33

- Data-taking since July 2013
- 18 modules mounted (~ 5kg)
 - \rightarrow 17 of 18 are fully operational
- 11 x conventional design (improved)
 - Use of radiopure clamps
 - Radon prevention
- ✓ 6 x fully-active new designs

these results: analysis of one detector module (TUM-40) mass: 250g exposure: 29 kg-days

Stick-Based Detector Holder

TUM 40

TUM-40: Radiopurity & Performance

Average rate: ~3.5 counts / [kg keV day]

Gamma-lines from **cosmogenic** activation

Excellent resolution: $\sigma \approx 100 \text{eV}$

- No surface backgrounds
- Best radiopurity (≈ 3.5 / [kg keV day])
- Low trigger threshold (≈ 600 eV)
- High resolution ($\sigma \approx 100 \text{ eV}$)
- → Low-threshold Dark Matter analysis possible
- \rightarrow Use non-blinded dataset of 29kg*days

TUM-40: Surface Backgrounds

exposure: 29 kg-days

Present WIMP Landscape

Results from 29kg-days of TUM-40

Strategie future

Le caratteristiche dei rivelatori di CRESST lo rendono particolarmente adatto a esplorare la zona di WIMP a bassa massa (mentre ad alte masse [M_D> 1 ton], data la complessità della tecnica, è difficile essere competitivi con esperimenti come liquidi criogenici e Nal).

Strategie future

Le caratteristiche dei rivelatori di CRESST lo rendono particolarmente adatto a esplorare la zona di WIMP a bassa massa (mentre ad alte masse [M_D> 1 ton], data la complessità della tecnica, è difficile essere competitivi con esperimenti come liquidi criogenici e Nal).

Strategie future

Le caratteristiche dei rivelatori di CRESST lo rendono particolarmente adatto a esplorare la zona di WIMP a bassa massa (mentre ad alte masse [M_D> 1 ton], data la complessità della tecnica, è difficile essere competitivi con esperimenti come liquidi criogenici e Nal).

Abbassare la soglia

Soglia energetica per i rivelatori di CRESST-II con masse ~ 300 g: 300-800 eV.

Strategia:

- Ridurre la massa dei rivelatori.
 - Dal modello termico (confermato sperimentalmente) dei rivelatori la risposta è dominata dalla capacita termica del TES a parità di raccolta di fononi

$\Delta T \sim \Delta E/C$

Essendo il rumore dominato da contributi non termici (i.e. non fononi sul main bolometer), S/N migliora.

Riducendo la massa dei rivelatori da ~ 250 g a 24 g (2x2x1 cm²) ci aspettiamo di raggiungere una soglia (conservativa) dell'ordine di 50 - 100 eV.

Migliorare la raccolta di luce

L'allargamento delle singole bande si riduce all'aumentare della luce raccolta. Strategia:

- Ridurre la massa dei rivelatori.
 - Diminuzione dell'auto-assorbimento
- Aumentare la superficie di raccolta della luce (doppi rivelatori o rivelatori a backer)

Raccolta di luce aumentata di un fattore 3 (atteso)

Ridurre il fondo

Il fondo e-/γ originato principalmente nei cristalli e nelle strutture attorno.

Strategia:

- Selezione delle polveri ha già provato un fattore 10.
- Ri-cristallizzazione migliora il fondo ad ogni passaggio (dimostrato). Grazie alla facilty di crescita alle TUM è possibile tenere sotto controllo questi processi.
- Selezione dei materiali, Rn suppression.

Goal: fattore ~50 (ottimistico 100)

Nuovo rivelatore

Conclusioni

- Con rivelatori a bassissima soglia e alta radiopurezza si apre una nuova era per la rivelazione di WIMP leggere
- Un radicale cambiamento nello sviluppo dei rivelatori (micro-macrobolometri) ci può portare a sensibilità leading a livello mondiale
- Un programma di ricerca aggressivo è accessibile senza modifiche maggiori del setup sperimentale nei prossimi 5 anni

Backup slides

CRESST @ Gran Sasso

- ~3600 m.w.e. deep
- µs: ~3x10⁻⁸/(s cm²)
- γs: ~0.73/(s cm²)
- neutrons: 4x10⁻⁶ n/(s cm²)

Collaboration

CRESST collaboration: ~40 scientist from 7 institution (mainly Germany + Italy, UK, Austria, Spain)

Max-Planck-Institut für Physik, München
Physik-Department E15, Technische Universität München
INFN Laboratori Nazionali del Gran Sasso
Eberhard-Karls-Univerität Tübingen
Department of Physics, University of Oxford
HEPHY, Österreichische Akademie der Wissenschaften and Technische Universität WienImage: Construct of Construction
Construction
Universitat ConstructionGrupo de Física Nuclear y Astropartículas,
Universidad de Zaragoza and Laboratorio Subterránea de Canfranc.Image: Construction
ConstructionImage: Construction
ConstructionImage: Construction
ConstructionImage: Construction
Construction

dituto Nazionale I Fisica Nucleare

niversidad

Zaragoza

New spokesperson: F. Petricca, MPP München (replacing W. Seidel)

INFN participation: historically: individual participation from C.Bucci (LNGS) since 1995. Since 2013 P.Gorla and L.Canonica joined the project.

Operating principles

SQUID based read out Operating temperature: 10 to 20 mK Width of transition: ~1mK, keV signals: ~ μ K Longterm stability: ~ μ K

Advantages of technique:

- Precise calorimetric measurement of deposited energy

- Low energy threshold and excellent energy resolution

- Different materials

25

CRESST-II: a phased program

The flexible carousel design and the accessibility of the setup were projected to make CRESST-II a phased program. New improvement are introduced preserving the quality of the experiment.

- Run 32 (2009-2011): 8 CaWO4 modules used for Dark Matter analysis. Net exposure after cuts: 730 kg days.
- Run 33 (2013-present): introduced 6 zero-bkg modules, low mass WIMP measurement
- Run 34 (2015-?): full zero-bkg setup

TUM-40: Surface Backgrounds

exposure: 29 kg-days

TUM-40: Surface Backgrounds

exposure: 29 kg-days

Quenching factor measurement

Neutron-Scattering Facility at MLL Accelerator

Precise measurement of QF of O, Ca and W at mK temperatures For CRESST detectors in ROI: $QFO = (11.2 \pm 0.5)\%$ $QFCa = (5.94 \pm 0.49)\%$ $QFW = (1.72 \pm 0.21)\%$

R.Strauss et al., accepted for EPJ-C, arXiv: 1401.3332

CaWO₄ Crystal Production at TU Munich

Furnace for Czochralski process

A. Erb and J.-C. Lanfranchi, *CrystEngComm*, 2013, **15**, 2301-2304 M. von Sivers, Opt. Mat. 34, 11 (2012) 1843-1848, arXiv:1206.1588

Dedicated machine for CRESST:

- All production steps under control
- Machining of crystals in-house

Goals :

- Increase radiopurity
- Increase light output
- Ensure supply

Major achievements:

- Reproducible growth process
- Crystals of CRESST size
- Unprecedented intrinsic radiopurity

TUM-40: Trigger Threshold

- Extremely low trigger threshold of $E_{th} \approx 603 eV$
- Resolution of $\sigma \approx 107 \text{eV}$ in agreement with resolution of gamma lines
- Nuclear-recoil energy precisely known!

Signal and Backgrounds

32

Efficient Veto of Surface Backgrounds

Data vs. Simulation

Results from run 32

	M1	M2
e/γ -events	8.00 ± 0.05	8.00 ± 0.05
α -events	$11.5^{+2.6}_{-2.3}$	$11.2^{+2.5}_{-2.3}$
neutron events	$7.5^{+6.3}_{-5.5}$	$9.7^{+6.1}_{-5.1}$
Pb recoils	$15.0^{+5.2}_{-5.1}$	$18.7 {}^{+4.9}_{-4.7}$
signal events	$29.4^{+8.6}_{-7.7}$	$24.2^{+8.1}_{-7.2}$
$m_{\chi} \; [\text{GeV}]$	25.3	11.6
$\sigma_{\rm WN}$ [pb]	$1.6 \cdot 10^{-6}$	$3.7\cdot 10^{-5}$

TUM-40 contaminations

Data vs. Simulation

Data vs. Simulation

Exclusion Plot – Comparison of Results

Exclusion Plot – Comparison of Results

Exclusion Plot – Comparison of Results

Future plans

Goals:

- Background reduction by a factor of 50:
 - Bulk: re-crystallisation of CaWO4 (proved)
 - External: material selection, new holder, better shielding.
- Increase of scintillation light output by a factor of 2
 - Slower growing speed (proved)
 - Smaller crystals (proved)
- Improvement of light detectors noise (factor 2):
 - Thinner detectors (?), new holder (?)

