NEWS: Nuclear Emulsions for Wimp Search

Natalia Di Marco (Laboratori Nazionali del Gran Sasso)

on behalf of

Italy

- Napoli University "Federico II"
- LNGS INFN
- Bari University
- Roma University "La Sapienza"

Japan • Nagoya University

NEWS: Nuclear Emulsions for Wimp Search

- Solar system movement in the galaxy → WIMP Flux is expected to be **not isotropic** @earth.
- Directional measurement for a **strong signature** and unambiguous proof of the galactic DM origin
- Use nuclear emulsions, i.e. solid detector → incomparably more sensitive than gas detectors
- Short recoil track length O(100 nm)

Both light and heavier nuclei

NIT emulsion films: Nano Imaging Trackers

Natsume et al, NIM A575 (2007) 439

NIT emulsion films: Nano Imaging Trackers

NIT emulsion films: Nano Imaging Trackers

Concept of readout: step I

Scanning with **optical microscope** and **shape recognition analysis**

Test using 400 keV Kr ions

Concept of readout: step II

Scanning with X-ray microscope of preselected zones

Optical microscope

Sensitivity

- Zero-background hypothesis
- 90% C.L.
- 100 nm tracking threshold
- directionality information not included

h

- Optical read-out system
- Measurement of sub-micrometric length tracks: angular resolution and efficiency evaluation
- Intrinsic background measurement
- External background evaluation
- MC simulation
- NIT technology
- Future?

• Optical read-out system

- Measurement of sub-micrometric length tracks: angular resolution and efficiency evaluation
- Intrinsic background measurement
- External background evaluation
- MC simulation
- NIT technology
- Future?

Optical read-out system

Goal -> emulsion scanning system with 200nm spatial resolution and 20cm²/h speed (=0.5 Kg/year)

Scanning speed and further upgrades

RESOLUTION	Field of view (micron ²)	Speed (kg/y)	Frame rate
4 Mpix Mikrotron 4096 X 3072 12 Mpix	204 x 153	0.5	560 f/s CoaXPress 180 f/s CoaXpress

- Custom mechanics for the optical path
- More rigid
- Lighter
- Custom LED
- Tune magnification through the camera position
- Tune the illumination optical path

Repeatability0,2 micron(1)Yaw20 microrad(500)

X-Y stage

• Optical read-out system

- Measurement of sub-micrometric length tracks: angular resolution and efficiency evaluation
- Intrinsic background measurement
- External background evaluation
- MC simulation
- NIT technology
- Future?

• Optical read-out system

• Measurement of sub-micrometric length tracks: angular resolution and efficiency evaluation

NIT as sub-micrometric tracking detector

Demonstrators: Slow Ion implantation Neutron test beam

Slow Ion Implantation

- gas: **Kr** or **C**
- Energy: 30 ~ 200 [keV] * ion
 valence
 →min 5 keV (Feb 2014, upgrade)
- implantation density > 10^7 /cm²

Slow Ion Implantation

- gas: **Kr** or **C**
- Energy: 30 ~ 200 [keV] * ion valence

Vertical Kr 400keV

Horizontal Kr 400keV

Angular distribution

Horizontal 400keV

Horizontal 200keV

Horizontal 300keV

Angular distribution

Efficiency evaluation

- First scan: X-ray microscope with sequence mode (Area scan)

& selection of the candidate (Track like)

- Second scan: Optical microscope by pin-point check

& Ellipse fit

X-ray MS

- 10.83nm / pix
- 2048 x 2048 pix CCD

Efficiency evaluation

- 2012 data
- Elli>=1.25
- Track length: 180~340nm
- Grain size ~200nm
- NA1.25 & λ ~ 550nm

- New data
- Elli>=1.25, 1.40, 1.60
- Track length: 50~450nm
- Grain size ~100nm
- NA1.45 & $\lambda \sim$ 440nm

- Optical read-out system
- Measurement of sub-micrometric length tracks: angular resolution and efficiency evaluation
- Intrinsic background measurement
- External background evaluation
- MC simulation
- NIT technology
- Future?

Intrinsic radioactive contamination

<u>Gelatin</u> <u>sample</u>	Contamination [ppb]	Activity [mBQ/kg]					
Th	2.7	11		Costituent	Mass fraction		
U	3.9	48		AgBrl	0.813		
<u>PVA</u>	Contamination	Activity		Gelatin	0.1253		
	[ppb]	[mBQ/kg]		PVA	0.0617		
Th	<0.5	<2					
U	<0.7	<9					
					Ļ		
<u>AgBrl</u>	Contamination [ppb]	Activity [mBQ/kg]	Fro	From ²³⁸ U: 1.75 ppb (21.6 mBq/kg) From ²³² Th: 1.18 ppb (4.8 mBq/Kg)			
Th	1	4	Fro				
U	1.5	18					
<u>Polystyrene</u>	Contamination [ppb]	Activity [mBQ/kg]					
Th	0.019	0.08	Mas	s spectrome	try measuremer	nts	
U	0.009	0.11	Uncertainty on contamination : 309			30%	

Conversion factors: $1 \text{ Bq/Kg}(^{232}\text{Th}) = 246 \text{ ppb}(^{232}\text{Th})$; $1 \text{ Bq/Kg}(^{238}\text{U}) = 81 \text{ ppb}(^{238}\text{U})$

Intrinsic neutron background

1) n from spontaneous fission

The only relevant contribution comes from ²³⁸U (fission probability/decay negligible for other elements)

2) (α ,n) reactions by α from ²³⁸U and ²³²Th chains

Element	Spontaneous Fission Rate		
	[fissions/g/s]	$\rm fissions/decay$	
226 Ra	0.6	2×10^{-11}	
²³² Th	5.72×10^{-8}	1.41×10^{-11}	
231 Pa	5×10^{-3}	3×10^{-12}	
²³⁴ U	9×10^{-3}	4×10^{-11}	
235 U	0.40×10^{-3}	5.0×10^{-9}	
^{238}U	6.78×10^{-3}	$5.45{ imes}10^{-7}$	

Cross-check with γ spectroscopy

- Secular equilibrium valid for AgBr-I "potassium free" powder
- Evidence for broken secular equilibrium at ²²⁶Ra for Gelatine P6406. The measured activity is ~ 20 times less
 → to be estimated (conservative assumption)
- Emulsion film thickness not enough to stop all α particle;
 → overestimation of the neutron flux (conservative assumption)

Intrinsic neutron background

Process	SOURCES calculation (n kg ⁻¹ y ⁻¹)	calculation by hand (n kg ⁻¹ y ⁻¹)
Spontaneous fission	0.745	0.768
(α ,n) from ²³² Th-chain	0.109	0.100
(α,n) from ²³⁸ U-chain	0.328	0.325
Total flux	1.182	1.193

External neutron sources

•Neutrons from environmental radioactivity

To be made negligible with appropriate shielding

Cosmic muon-induced neutrons

Preliminary estimation; underground expected to be less than intrinsic radioactive contamination

Approximations and assumptions:

Neutron differential spectrum: $10^{-5} n/\mu/g/cm^2/MeV$ Material used in the simulation is C_nH_{2n} Muon flux: $1/m^2/h$

Neutron flux: 0.009 n/kg/y/MeV Integrating from 0 to 10 MeV $\rightarrow \sim 0.05$ n/kg/y

Phys.31 (2009) 366

- Optical read-out system
- Measurement of sub-micrometric length track: angular resolution and efficiency evaluation
- Intrinsic background measurement
- External background evaluation
- MC simulation
- NIT technology
- Future?

2014 - 2015 activity

- New film production @ LNGS (underground)
- Slow Ion implantation @ EU (C ion 80KeV)
- Further studies with neutron source (²⁴¹AmBe) @ LNGS
- X-ray microscopy for cross-check and final angular resolution
- Measurement of the LNGS underground neutron flux (directionality)

Hardware developments:

• High resolution mechanics