Windows to Parallel Dark World ?

Zurab Berezhiani
Università di L'Aquila and LNGS Gran Sasso, Italy

What's Next LNGS, 15-16 Oct. 2014

Cosmic Coincidence \& Fine Tuning Problems

Todays Universe is flat ($\Omega_{\text {tot }} \approx 1$) and multi-component:

- $\Omega_{\mathrm{B}} \simeq 0.04$ observable matter - Baryons !
- $\Omega_{\mathrm{D}} \simeq 0.20$ dark matter: - WIMPS? Axions?

■ $\Omega_{\Lambda} \simeq 0.75$ dark energy: - Λ-term? 5th-essence?
A. coincidence of matter $\Omega_{\mathrm{M}}=\Omega_{\mathrm{D}}+\Omega_{\mathrm{B}}$ and dark energy $\Omega_{\Lambda}: \Omega_{\mathrm{M}} / \Omega_{\Lambda} \simeq 0.3$
... $\rho_{\Lambda} \sim$ Const., $\quad \rho_{\mathrm{M}} \sim a^{-3} ; \quad$ why $\rho_{\mathrm{M}} / \rho_{\Lambda} \sim 1$ - just Today?
Antrophic answer: if not Today, then it could be Yesterday or Tomorrow ...
B. Fine Tuning between visible Ω_{B} and dark Ω_{D} matter: $\Omega_{\mathrm{B}} / \Omega_{\mathrm{D}} \simeq 0.2$... $\rho_{\mathrm{B}} \sim a^{-3}, \quad \rho_{\mathrm{D}} \sim a^{-3}$; why $\rho_{\mathrm{B}} / \rho_{\mathrm{D}} \sim 1-$ Yesterday Today \& Tomorrow?

- Difficult question ... popular models for primordial Baryogenesis (GUT-B, Lepto-B, Spont. B, Affleck-Dine B, EW B, ...) have no feeling for popular DM candidates (Wimp, Wimpzilla, axion, axino, gravitino ...)
- How Baryon Asymmetry could knew about Dark Matter? - again anthropic (landscaped) Fine Tunings in Particle Physics and Cosmology? Just for our good?

Give a human face to dark matter

For observable particles very complex physics !!
Gauge $G=S U(3) \times S U(2) \times U(1)(+$ SUSY ? GUT ? RH neutrinos ?) photon, electron, nucleons (quarks), neutrinos, gluons, $W^{ \pm}-Z$, Higgs ... long range EM forces, confinement scale Λ_{QCD}, weak scale M_{W}
... matter vs. antimatter (B-conserviolation, C/CP ... Sakharov)
... existence of nuclei, atoms, molecules life.... Homo Sapiens !
What if dark matter comes from extra gauge sector ... which is not ad hoc simple system but it is complex structure alike the observable one?
Parallel gauge sector: $-G^{\prime}=S U(3)^{\prime} \times S U(2)^{\prime} \times U(1)^{\prime}$? photon', electron', nucleons' (quarks'), $W^{\prime}-Z^{\prime}$, gluons' ?
... long range EM forces, confinement at $\Lambda_{\mathrm{QCD}}^{\prime}$, weak scale M_{W}^{\prime} ?
... asymmetric dark matter (B^{\prime}-conserviolation, C/CP ...) ?
... existence of twin nuclei, atoms, molecules ... life ... twin Homo Sapiens?
Dark gauge sector ... similar to our particle sector? ... or exactly the same? two (or more) parallel branes in extra dimensions? $E_{8} \times E_{8}^{\prime}$? who knows but let us imagine !
"Imagination is more important than knowledge..." A. Einstein

Parallel/Mirror/Twin World(s)

Parity ($L \leftrightarrow R$) in Weak Ints. restored by Mirror fermions Lee \& Yang '56 Mirror fermions = hidden sector Kobzarev Okun Pomeranchuk '66 hidden sector similar to our but not exact copy

Nishijima, Saffouri ' 65 $S U(10) \rightarrow S U(5) \times S U(5)$ and Alice strings

- Two identical gauge factors, $G \times G^{\prime}$, with identical field contents and Lagrangians: $\quad \mathcal{L}_{\text {tot }}=\mathcal{L}+\mathcal{L}^{\prime}+\mathcal{L}_{\text {mix }}-S U(5) \times S U(5)^{\prime}, \quad$ etc.
- Can naturally emerge in string theory: O \& M matter fields localized on two parallel branes with gravity propagating in bulk: e.g. $E_{8} \times E_{8}^{\prime}$
- Exact parity $G \leftrightarrow G^{\prime}$: Mirror matter is dark (for us), but its particle physics we know exactly (on our skin) - no new parameters!
- Mirror sector $=$ a duplicate of our particle sector ...
all particles: $e, p, n, \nu, \gamma, \ldots$ have invisible twins $e^{\prime}, p^{\prime}, n^{\prime}, \nu^{\prime}, \gamma^{\prime}, \ldots$ with exactly the same mass spectrum and interaction constants

Gravity is a common force between two sectors ... while mirror particles are dark for us (do not interact with our photon).
So, mirror matter is a natural candidate for (asymmetric) dark matter (not CDM) !!
Dissipative DM, but not excluded by cosmological tests Z.B., Comelli, Villante, 2000

Testing parallel world (worlds)

Numerous potential consequences worth of theoretical and experimental studies can be classified in three main parts:

- Cosmological implications: mirror matter as dark matter, with specific implications for baryogenesis and dark matter genesis, evolution of the Universe, formation and structure of galaxies, gravitational lensing and microlensing, etc.
- Oscillation phenomena between ordinary and mirror particles which can be observable in laboratories: any neutral particle, elementary (as photon or neutrino) or composite (as the neutron or hydrogen atom) can mix with its mass degenerate twin leading to a matter disappearance (or appearance) phenomena
- Experimental direct and indirect searches of dark matter: mirror hydrogen, helium (and some mirror nuclei) as dark matter, different interaction portals are possible. The low region 1-5 GeV of dark matter masses is practically unexplored. Dark antimatter (we do not know the sign of baryon asymmetry in parallel sector): e.g. mirror hydrogen to antihydrogen transition. Signals in indirect search as for laboratory search.

Para-world (or worlds) as dark matter

Mirror particles are dark for us (do not interact with our photon) and gravity is a common force between two sectors

So, mirror matter is a natural candidate for dark matter !! but not CDM

Dissipative DM, but not excluded by cosmological tests
Z.B., Comelli, Villante, 2000

- Mirror microphysics = our microphysics
but mirror cosmology \neq our cosmology Mirror Sector should be colder $T^{\prime} / T<0.5$ (BBN), $\quad T^{\prime} / T<0.3 \quad$ (CMB+LSS)
- There can be feeble interactions between ordinary and mirror particles:
(Give dark matter detection a chance - DAMA \& CRESST?)
But these should be feeble enough for not to equilibrate T and T^{\prime}
- B \& L violating interactions most interesting:
- they can co-generate in Early Universe both baryon and mirror-baryon asymmetries, naturally explaining $\Omega_{B}^{\prime} / \Omega_{B} \sim 5 \ldots$
- At lower energies, they can be tested experimentally via mixing phenomena between ordinary and mirror particles: neutrino-mirror neutrino (active-sterile), neutron-mirror neutron mixing ...

Possible interactions between O \& M particles

any neutral particle (elementary or composite) can mix its mirror twin ... exactly degenerate in mass

Can be induced by exchange of extra gauge singlet particles or common gauge fields acting with both O \& M particles ...

■ photon - mirror photon kinetic mixing $\quad \varepsilon F^{\mu \nu} F_{\mu \nu}^{\prime}$
Holdom '86 mirror particles become "millicharged" $Q^{\prime} \sim \varepsilon Q$ relative to our photon
\longrightarrow positronium - mirror positronium mixing ($e^{+} e^{-} \rightarrow e^{\prime+} e^{\prime-}$) Glashow '86 and BBN bound $\varepsilon<3 \times 10^{-8}$, Carlson, Glashow '87 now ... BBN : $\varepsilon<2 \times 10^{-9}$, Structures : $\varepsilon<3 \times 10^{-10}$ ZB, Lepidi, ${ }^{\prime} 08$

■ meson - mirror meson mixing: $\pi^{0}-\pi^{0 \prime}, \quad K^{0}-K^{0 \prime}, \quad \rho^{0}-\rho^{0 \prime}$, etc. $\frac{1}{M^{2}}\left(\bar{u} \gamma^{5} u-\bar{d} \gamma^{5} d\right)\left(\bar{u}^{\prime} \gamma^{5} u^{\prime}-\bar{d}^{\prime} \gamma^{5} d^{\prime}\right), \quad \frac{1}{M^{2}}\left(\bar{d} \gamma^{5} s\right)\left(\bar{d}^{\prime} \gamma^{5} s^{\prime}\right) \quad(\Delta S=1)$
\ldots analogous to $\frac{1}{M^{2}}\left(\bar{d} \gamma^{5} s\right)\left(\bar{d} \gamma^{5} s\right) \quad \longrightarrow \quad K^{0}-\bar{K}^{0} \quad$ mixing $\quad(\Delta S=2)$
Phenom. limits: $\quad M>10 \mathrm{TeV}\left(\pi^{0}-\pi^{0 \prime}\right), \quad M>100 \mathrm{TeV}\left(K^{0}-K^{0 \prime}\right)$

Lepton \& baryon number violating interactions

■ neutrino - mirror neutrino mixing $\left(\nu-\nu^{\prime}\right)$ - effective operators : $\frac{1}{M}(l \phi)\left(l^{\prime} \phi^{\prime}\right) \quad\left(\Delta L=1, \Delta L^{\prime}=1\right) \quad$ active-sterile mixing analogous to $\quad \frac{1}{M}(l \phi)^{2} \quad(\Delta L=2), \quad \frac{1}{M}\left(l^{\prime} \phi^{\prime}\right)^{2} \quad\left(\Delta L^{\prime}=2\right)$ - operators that generate neutrino Majorana masses via seesaw mechanism

- neutron - mirror neutron mixing $\left(n-n^{\prime}\right)$ - effective operators : $\frac{1}{M^{5}}(u d d)\left(u^{\prime} d^{\prime} d^{\prime}\right), \quad\left(\Delta B=1, \Delta B^{\prime}=1\right)$ c.f. operators $\frac{1}{M^{5}}(u d d)^{2} \quad(\Delta B=2), \frac{1}{M^{5}}\left(u^{\prime} d^{\prime} d^{\prime}\right)^{2}\left(\Delta B^{\prime}=2\right)$ which generate neutron - antineutron mixing
- hydrogen - mirror hydrogen mixing - effective operators :
$\frac{1}{M^{8}}(u d d e)\left(u^{\prime} d^{\prime} d^{\prime} e^{\prime}\right)$,
$\left(\Delta B=1, \Delta L=1 ; \Delta B^{\prime}=1, \Delta L^{\prime}=1\right)$
c.f. operators $\frac{1}{M^{8}}(u d d e)^{2} \longrightarrow$ hydrogen-antihydrogen atom mixing

BBN demands :

Mirror particle physics \equiv ordinary particle physics but mirror cosmology \neq ordinary cosmology

■ at the $B B N$ epoch, $T \sim 1 \mathrm{MeV}, \quad g_{*}=g_{*}^{S M}=10.75$ as contributed by the $\gamma, e^{ \pm}$and 3ν species : $\quad N_{\nu}=3$
■ if $T^{\prime}=T$, mirror world would give the same contribution: $g_{*}^{\text {eff }}=2 \times g_{*}^{S M}=21.5$ - equivalent to $\Delta N_{\nu}=6.14$!!!
■ If $T^{\prime}<T$, then $g_{*}^{\text {eff }} \approx g_{*}^{S M}\left(1+x^{4}\right), x=T^{\prime} / T \longrightarrow \Delta N_{\nu}=6.14 \cdot x^{4}$ E.g. $\Delta N_{\nu}<0.4$ requires $x<0.5$; for $x=0.2 \quad \Delta N_{\nu} \simeq 0.01$

- Paradigm - different initial conditions \& weak contact :
- after inflation O and M worlds are (re)heated non-symmetrically, $T^{\prime}<T$
- processes between O-M particles are slow enough \& stay Out-of-Equilibrium
- both sectors evolve adiabatically, without significant entropy production

So $x=T^{\prime} / T$ is nearly independent of time $\left(T_{\mathrm{CMB}}^{\prime} / T_{\mathrm{CMB}}\right.$ today)
$\mathrm{BBN}: \Delta N_{\nu} / 6.14=x^{4} \ll 1 \quad \longrightarrow \quad \mathrm{BBN}^{\prime}: \quad \Delta N_{\nu}^{\prime} / 6.14=x^{-4} \gg 1$
${ }^{1} \mathrm{H} \quad 75 \%, \quad{ }^{4} \mathrm{He} \quad 25 \% \quad$ vs. $\quad{ }^{1} \mathrm{H}^{\prime} \quad 25 \%,{ }^{4} \mathrm{He}^{\prime} \quad 75 \%$
Z. Berezhiani, D. Comelli, F. Villante, Phys. Lett. B 503, 362 (2001)

Co-baryo/leptogenesis between O \& M sectors

E.g. $\mathrm{D}=5$ effective operators (active sterile neutrino system) $\frac{A}{M} l l \phi \phi+\frac{A^{\prime}}{M} l^{\prime} l^{\prime} \phi^{\prime} \phi^{\prime}+\frac{D}{M} l l^{\prime} \phi \phi^{\prime}$

■ They generate also processes like $l \phi \rightarrow \tilde{l}^{\prime} \tilde{\phi}^{\prime}\left(l^{\prime} \phi^{\prime}\right)(\Delta L=1)$ and $l \phi \rightarrow \tilde{l} \tilde{\phi}$ $(\Delta L=2)$ satisfying Sakharov's 3 conditions for baryogenesis
A. violate B-L - by definition
B. violate CP - complex Yukawa constants $y_{i a}$
C. out-of-equilibrium - already implied by the BBN
and thus generate $B-L \neq 0$ ($\rightarrow B \neq 0$ by sphalerons) for ordinary matter

- The same reactions generate $B^{\prime}-L^{\prime} \neq 0\left(\rightarrow B^{\prime} \neq 0\right) \quad$ in Mirror sector.

Both matter fractions: observable and dark, can be generated at one shoot !!
L. Bento, Z. Berezhiani, PRL 87, 231304 (2001)

Sterile neutrinos come from parallel hidden sector

- Present Cosmology

- Parallel sector
- Mirror World
- Alice
- Alice
- Interactions
- B \& L violation
- BBN demands
- See-Saw
- Neutron mixing
- Oscillation
- Experiment
- Vertical B
- Vertical B
- Oscillation
- Vertical B
- Parallel sector
- Alice
- Neutron mixing
- Neutron mixing
- Oscillation
- Oscillation
- Vertical B
- Vertical B

Effective $D=5$ operators $\frac{A}{M}(l \phi)(l \phi)+\frac{A^{\prime}}{M}\left(l^{\prime} \phi^{\prime}\right)\left(l^{\prime} \phi^{\prime}\right)+\frac{D}{M}(l \phi)\left(l^{\prime} \phi^{\prime}\right)$

Baryon number violation: $\Delta B=1$

any neutral particle, elementary or composite, can mix its mass degenerate twin

■ baryon - mirror baryon mixings ($n-n^{\prime}, \Lambda-\Lambda^{\prime}$ etc.)
ZB, Bento, '05 $\frac{1}{M^{5}}(u d d)\left(u^{\prime} d^{\prime} d^{\prime}\right), \quad$ six-fermion interaction $\left(\Delta B=1, \Delta B^{\prime}=1\right)$

- analogous to 6 -fermion operators $\frac{1}{M^{5}}(u d d)^{2}(\Delta B=2)$, inducing neutron - antineutron mixing

$$
\tau_{n \bar{n}}>10^{8} \mathrm{~s} \quad \tau_{n n^{\prime}}=?
$$

$n-n^{\prime}$ oscillation: surprising possibility

Neutron-Mirror-Neutron Oscillations: How Fast Might They Be?

Zurab Berezhiani ${ }^{1, *}$ and Luís Bento ${ }^{2, *}$
${ }^{1}$ Dipartimento di Fisica, Università di L'Aquila, I-67010 Coppito, AQ, Italy and Laboratori Nazionali del Gran Sasso, INFN, I-67010 Assergi, AQ, Italy
${ }^{2}$ Faculdade de Ciências, Centro de Física Nuclear da Universidade de Lisboa, Universidade de Lisboa,
Aencias, Centro de Física Nuclear da Universidade de Lisboa, Univ Avenida Professor Gama Pinto 2, 1649-003 Lisboa, Portugal (Received 12 August 2005; published 27 February 2006)

We discuss the phenomenological implications of the neutron (n) oscillation into the mirror neutron $\left(n^{\prime}\right)$, a hypothetical particle exactly degenerate in mass with the neutron but sterile to normal matter. We show that the present experimental data allow a maximal $n-n^{\prime}$ oscillation in vacuum with a characteristic time τ much shorter than the neutron lifetime, in fact as small as 1 sec . This phenomenon may manifest in neutron disappearance and regeneration experiments perfectly accessible to present experimental capabilities and may also have interesting astrophysical consequences, in particular, for the propagation of ultra high energy cosmic rays. 3 MARCH 2006

Experimental \& astrophysical bounds

- ILL experiment for $n-\tilde{n}$ oscillation search in flight: $t \simeq 0.1 \mathrm{~s}, \quad B<10^{-4} \mathrm{G}$
- no \tilde{n} event found, $\tau_{n \tilde{n}}>0.86 \times 10^{8} \mathrm{~s} \quad(\sim 3 \mathrm{yr})$

Baldo Ceolin et al. '94

- Present Cosmology
- Parallel sector - Mirror World - Alice
as for $n-n^{\prime}$: about 5% neutron deficit was observed, so taking $P_{n n^{\prime}}(t) \simeq\left(t / \tau_{n n^{\prime}}\right)^{2}<10^{-2}: \quad \tau_{n n^{\prime}}>1 \mathrm{~s}$
- $n-n^{\prime}$ - anomalous UCN loses, $\eta<2 \cdot 10^{-6}: \quad \tau_{n n^{\prime}}>0.2 \mathrm{~s}$
- Nuclear Stability: no limit for $\tau_{n n^{\prime}}$
- BBN bound: $\tau_{n n^{\prime}}>1 \mathrm{~s}$, neutron star stability: $\tau_{n n^{\prime}}>10^{-2} \mathrm{~s}$

```
Recent Experimental search: comparing the neutron losses at different \(B\) FR Munich, Schmidt et al. Procs. B\&L-violation’07, Berkeley ILL Grenoble, Ban et al. Phys.Rev.Lett. 99, 161603 (2007)
ILL Grenoble, Serebrov et al. Phys.Lett. B663, 181 (2008) ILL Grenoble, Altarev et al. Phys.Rev. D 80, 032003 (2009) ILL Grenoble, Bodek et al. NIM A611, 141 (2009)
ILL Grenoble, Serebrov et al. NIM A611, 137 (2009)
ILL Grenoble, Z.B et al., 2013 paper in preparation
\(\tau_{n n^{\prime}}>414 \mathrm{~s}\) if \(B^{\prime}=0\)
not valid if there is mirror magnetic field \(B^{\prime}>10 \mathrm{mG}!!!\)
```


Experiments of Serebrov at ILL, Grenoble

Serebrov et al. (I) Phys.Lett. B 663, 181 (2008); (II) NIM A611, 137 (2009)

- Present Cosmology
- Parallel sector
- Mirror World
- Alice

Comparing the losses for different magnetic fields in the UCN trap, Volume = 190 I , two detectors and monitor in the guide (PF2 MAMBA).

Collision frequency $\nu \approx 11 \mathrm{~s}^{-1} \quad$ (m.f.p. $t_{f} \sim 0.1 \mathrm{~s}$)
effective holding time $t_{s}=370 \mathrm{~s}$ (collision No. $n_{s}=\nu t_{s} \approx 4000$)
About 4 month of measurements (each exp. I and exp. II)
Reach to $n-n^{\prime}$ oscillation probability down to $\Delta P \sim 3 \times 10^{-8}$

2-nd experiment of Serebrov

Comparing the losses for different magnetic fields:
Horizontal magnetic field (measurements about 3 month) repeating sequences
$B_{+}, b_{+}, b_{-}, B_{-} ; B_{-}, b_{-}, b_{+}, B_{+}$
B large magnetic field ($B=0.2 \mathrm{G}$)
b small (zero) magnetic field ($b=0.2,0.7,3.0,5.6,12 \mathrm{mG}$)
Directional (+-) asymmetry $A_{B}=\frac{N_{B+}-N_{B-}}{N_{B+}+N_{B-}}=\left(D_{B} \cos \beta\right) \nu t_{s}$ (expected vanishing for small field, $A_{b} \approx 0$)

- compatible with 0 within $1 \sigma, \quad A_{B}=(0.1 \pm 0.5) \times 10^{-4} \quad$ (but see later!)

Large-small asymmetry $E_{B b}=\frac{N_{\vec{B}}+N_{-\vec{B}}}{N_{\vec{b}}+N_{-\vec{b}}}-1 \approx\left(P_{B}-P_{b}\right) \nu t_{s}$,

- 2σ deviation: $E=-(1.5 \pm 0.75) \times 10^{-4}$

Vertical magnetic field (incomplete 2 weeks) repeating sequences
$B_{+}, B_{-}, B_{-}, B_{+} ; B_{-}, B_{+}, B_{+}, B_{-}$

- only large field, $B \simeq 0.2 G \& B \simeq 0.4 G$

Up-down (+-) asymmetry $A_{B}=\frac{N_{B+}-N_{B-}}{N_{B+}+N_{B-}}=\left(D_{B} \cos \beta\right) \nu t_{s}$

- 3σ deviation reported: $A_{B}=(3.8 \pm 1.2) \cdot 10^{-4} \quad$ something was wrong here

Eur. Phys. J. C (2012) 72:1974
DOI 10.1140/epjc/s 10052-012-1974-5

[^0]
Letter

Magnetic anomaly in UCN trapping: signal for neutron oscillations to parallel world?

Zurab Berezhiani ${ }^{1,2, a}$, Fabrizio Nesti ${ }^{1}$
${ }^{1}$ Dipartimento di Fisica, Università dell'Aquila, Via Vetoio, 67100 Coppito, L'Aquila, Italy
${ }^{2}$ INFN, Laboratori Nazionali Gran Sasso, 67010 Assergi, L'Aquila, Italy

Received: 2 March 2012 / Published online: 11 April 2012
© The Author(s) 2012. This article is published with open access at Springerlink.com

Abstract Present experiments do not exclude that the neutron n oscillates, with an appreciable probability, into its invisible degenerate twin from a parallel world, the so-called mirror neutron n^{\prime}. These oscillations were searched experimentally by monitoring the neutron losses in ultra-cold neutron traps, where they can be revealed by the magnetic field dependence of $n-n^{\prime}$ transition probability. In this work we reanalyze the experimental data acquired by the group of A.P. Serebrov at Institute Laue-Langevin, and find a dependence at more than 5σ away from the null hypothesis. This anomaly can be interpreted as oscillation of neutrons to mirror neutrons with a timescale of few seconds, in the presence of a mirror magnetic field order 0.1 G at the Earth. This result, if confirmed by future experiments, will have deepest consequences for fundamental particle physics, astrophysics and cosmology.

Parallel matter can be a viable candidate for dark matter [7-9]. Certain $B-L$ and CP violating processes between ordinary and mirror particles can generate the baryon asymmetries in both sectors [10-12] which scenario can naturally explain the relation $\Omega_{D} / \Omega_{B} \simeq 5$ between the dark and visible matter fractions in the Universe [13-16]. Such interactions can be mediated by heavy messengers coupled to both sectors, as right-handed neutrinos [10-12] or extra gauge bosons/gauginos [17]. ${ }^{1}$ In the context of extra dimensions, ordinary and mirror sectors can be modeled as two parallel three-dimensional branes and particle processes between them mediated by the bulk modes or "baby branes" can be envisaged [24].

On the other hand, these interactions can induce mixing phenomena between ordinary and mirror particles. In fact, any neutral particle, elementary or composite, may oscillate

Measurements at $B \approx 0.2 G$

- Present Cosmology
- Parallel sector
- Mirror World

Det/Mon = Const $\quad \chi_{\text {dof }}^{2}=1.4 \quad$ Det1/Det2 $=$ Const $\quad \chi_{\text {dof }}^{2}=1.0$

Results of our analysis

- Present Cosmology
- Parallel sector
- Mirror World
Z.Berezhiani, Nesti, Magnetic anomaly in UCN trapping: signal for neutron oscillation to parallel world? Eur. Phys. J. 72, 1974 (2012)

Up-down asymmetry $A=\frac{N_{B+}-N_{B-}}{N_{B+}+N_{B-}}=\left(D_{B} \cos \beta\right) \nu t_{s}, \quad \nu t_{s} \approx 4000$

- at $B \simeq 0.2 \mathrm{G}: A_{B}=(7.0 \pm 1.3) \times 10^{-4} \quad\left(\chi_{\mathrm{dof}}^{2}=0.9\right) \quad(5.2 \sigma)!!$
- calibration in free flow mode show no evidence for systematic effects, with
$\pm 2 \times 10^{-5}$
- at $B \simeq 0.4 \mathrm{G}: A_{B}=(-0.3 \pm 2.4) \times 10^{-4} \quad$ Resonance ?

Points to $n-n^{\prime}$ oscillation with $\tau_{n n^{\prime}}=2-10 \mathrm{~s}$ and $B^{\prime} \simeq 0.1 \mathrm{G}$

Our analysis for horizontal field (preliminary)

sequences $B_{+}, b_{+}, b_{-}, B_{-} ; B_{-}, b_{-}, b_{+}, B_{+}$
B large magnetic field ($B=0.2 \mathrm{G}$)
b small (zero) magnetic field $(b=0.2,0.7,3.0,5.6,12 \mathrm{mG})$
+- asymmetry at small field $A_{b}=\frac{N_{b+}-N_{b-}}{N_{b+}+N_{b-}}=\left(D_{b} \cos \beta\right) \nu t_{s}$ Zero result expected !! ... and Zero is obtained !!

Constant fit $\quad A_{b}=(-1.6 \pm 5.3) \times 10^{-5} \quad$ with $\quad \chi_{\text {dof }}^{2}=1.0$ and no significant hint for time modulation

But for large field, $B=0.2 G \ldots$
sequences $B_{+}, b_{+}, b_{-}, B_{-} ; B_{-}, b_{-}, b_{+}, B_{+}$
+- asymmetry at large field $A_{B}=\frac{N_{B+}-N_{B-}}{N_{B+}+N_{B-}}=\left(D_{B} \cos \beta\right) \nu t_{s}$

- Present Cosmology
- Parallel sector
- Mirror World - Alice

Constant fit $\quad A_{B}=(-1.4 \pm 5.3) \times 10^{-5} \quad$ but with $\quad \chi_{\text {dof }}^{2}=1.9$
while time periodic fit $A_{B} \propto C+A \cos \left(2 \pi \frac{t-t_{0}}{T}\right)$ gives
$C=(-3.0 \pm 6.3) \times 10^{-5}, \quad A=(-37.0 \pm 9.2) \times 10^{-5}$
and $T=298 \pm 5 \mathrm{~h} \quad-\quad$ with $\chi_{\mathrm{dof}}^{2}=1.3$

And comparing large B and small b fields

- Present Cosmology
- Parallel sector
- Mirror World - Alice
sequences $B_{+}, b_{+}, b_{-}, B_{-} ; B_{-}, b_{-}, b_{+}, B_{+}$
Large-small asymmetry $E_{B b}=\frac{N_{\vec{B}}+N_{-\vec{B}}}{N_{\vec{b}}+N_{-\vec{b}}}-1 \approx\left(P_{B}-P_{b}\right) \nu t_{s}$,

Constant fit: $E_{B b}=-(1.5 \pm 0.75) \times 10^{-4} \quad$ with $\quad \chi_{\mathrm{dof}}^{2}=1.1(2 \sigma)$
and time periodic fit $E_{B b} \propto C+A \cos \left(2 \pi \frac{t-t_{0}}{T}\right)$ gives
$C=(-1.3 \pm 8.0) \times 10^{-5}, \quad A=(-26 \pm 11) \times 10^{-5} \quad(2.5 \sigma)$
and $T=310 \pm 11 \mathrm{~h} \quad-\quad$ with $\chi_{\text {dof }}^{2}=0.8$
(while for A_{B} we had $T=298 \pm 5 h!!$)

Global analysis if signals are time variable

Experiments PSI 1,2,3 also indicate about 3σ anomalies near $B \sim 0.1 \mathrm{G}$ Last experiment at ILL (summer 2013) shows 4σ deviation (Preliminary)

$B^{\prime} \sim 0.1 \mathrm{G}$ but its value may vary in time within 50%, and its direction in 100%. $\tau \sim 1-10 \mathrm{~s}$?????

Mirror magnetic field of Earth maybe generated by a tiny friction of matter and captured dark matter - analogous to Z.B., Dolgov, Tkachev, 2013
$n \rightarrow n^{\prime} \rightarrow n$ regeneration: Walking through the wall \ldots
IRIDE @ LNF, BNL (?) ESS (intensity, pulse shape)

- Present Cosmology
- Parallel sector
- Mirror World - Alice
- Alice
- Interactions
- B \& L violation
- BBN demands
- See-Saw
- See-Saw
- Neutron mixing
- Oscillation
- Experiment
- Vertical B
- Vertical B
- Oscillation
- Vertical B

- Vertical B

- Parallel sector
- Alice
- Neutron mixing
- Neutron mixing
- Oscillation
- Oscillation
- Vertical B
- Vertical B

To maximize the neutron observation time the proposed experiment can involve a beam of very cold neutrons, VCN, produced by the ESS. Neutrons with assumed velocities between 50 to $500 \mathrm{~m} / \mathrm{s}$ will travel along a 100+100 meter evacuated tube with a neutron absorber placed in the middle, so that no initial neutrons should be in the second volume. The detector located at the end of the second hundred meters will detect regenerated neutrons. In order to select the resonance case the tube must be placed within a homogenous tunable magnetic field.
$n \rightarrow n^{\prime} \rightarrow n \quad$ near resonance $P_{n n^{\prime}} \times P_{n^{\prime} n} \sim(t / \tau)^{4} \sim 10^{-6}$

Concluding: What if $n-n^{\prime}$ will turn true really ...

- Need for new $n \rightarrow n^{\prime}$ exps. with bigger statistics and careful systematics
- search for $n \rightarrow n^{\prime} \rightarrow n$ regeneration,
- or Lorentz-violation in the neutron precession - (B-dependent corrections to μ_{n}) are positive $n-n^{\prime}$ oscillation - window to parallel world !! Fundamental for particle physics, astrophysics and cosmology, and even for geophysics.... News:
- Who is dark matter, its nature, its detection, identity of sterile ν 's
- Primordial co-genesis of matter and dark matter: $\Omega_{B^{\prime}} \sim 5 \Omega_{B}$
- impact for Big Bang Nucleosynthesis, CMB and cosmological structure formation
- Dark matter in Galaxies: Halo as mirror elliptic galaxy, Machos, dark supernove
- Dark matter capture by the solar system and the Earth ...
- origin of magnetic fields in galaxies, stars and even planets ? ...
- $n-n^{\prime}$ in cosmic rays, in solar flares, at the BBN, in neutron stars, etc.
- Other Ordinary - mirror particle oscillations: e.g. $\Lambda \rightarrow \Lambda^{\prime}, K \rightarrow K^{\prime}, \ldots$ or for hydrogen atom $\mathrm{H} \rightarrow \mathrm{H}^{\prime}$, etc. + regeneration but also particle- antiparticle oscillations $n \rightarrow \tilde{n}, \Lambda \rightarrow \tilde{\Lambda}, \mathrm{H} \rightarrow \tilde{\mathrm{H}}$ etc.
- underlying TeV scale physics can be tested at the LHC and meson factories
- can provide a free source of energy ? A. Asimov, "The Gods Themselves"

What's Next for LNGS

Study of potential consequences of particle regeneration or appearance in low background conditions:

- Regeneration of neutrons from solar flares: $n \rightarrow n^{\prime} \rightarrow n$ in underground chamber with controlled magnetic field
- Search for millicharged DM captured in the Earth via induced EM phenomena rotating disk.
- Dark antimatter: Appearance of antiparticles (antineutron, antihydrogen) from mirror sector in underground chamber with controlled magnetic field. observation of antineutrino burst from explosions of mirror SN.

Baryon number violating operators: $\quad D=9$
$\square \frac{1}{M^{5}}(u d d)\left(u^{\prime} d^{\prime} d^{\prime}\right), \quad$ six-fermion interaction $\left(\Delta B=1, \Delta B^{\prime}=1\right)$ induces he neutron-mirror neutron mass mixing $\epsilon\left(\bar{n} n^{\prime}+\bar{n}^{\prime} n\right)$, $\epsilon \sim \frac{\Lambda_{\mathrm{QCD}}^{6}}{M^{5}} \simeq\left(\frac{10 \mathrm{TeV}}{\mathcal{M}}\right)^{5} \cdot 10^{-15} \mathrm{eV} \quad \mathcal{M} \sim 10 \mathrm{TeV}$

- 6-fermion operators $\frac{1}{M^{5}}(u d d)^{2} \quad(\Delta B=2)$, inducing neutron - antineutron mixing, can also be obtained with Majorana mass insertion, $\mu \ll M$

induced by heavy singlet N "seesaw" u, d and u^{\prime}, d^{\prime} ordinary and mirror quarks S, S^{\prime} color triplet scalars (squarks?)) - can generate B (and B^{\prime}) asymmetry via processes $d S \rightarrow d^{\prime} S^{\prime}$ etc. even below TeV scale (adult Early Universe)
$\mathcal{M} \sim\left(M_{S}^{4} M_{N}\right)^{1 / 5} \sim 10 \mathrm{TeV}$ - can be achieved in Seesaw
if $M_{S}, M_{N} \sim 10 \mathrm{TeV}$, or $M_{N} \sim 10^{7} \mathrm{GeV}$ and $M_{S} \sim 1 \mathrm{TeV}$
Testable at LHC?
ZB, Bento, '05

Neutron - Mirror neutron mixing

- $n-n^{\prime}$ oscillation in vacuum: maximal mixing $\theta=45^{\circ}$ and oscillation time $\tau_{n n^{\prime}}=\epsilon^{-1} \sim\left(\frac{\mathcal{M}}{10 \mathrm{TeV}}\right)^{5} \times 1 \mathrm{~s}$
$P_{n n^{\prime}}(t)=\sin ^{2}\left(\frac{t}{\tau_{n n^{\prime}}}\right) \times \exp \left(-\frac{t}{\tau_{\text {dec }}}\right)$
... can be fast, $\tau_{n n^{\prime}} \sim 1 \mathrm{~s} . .$. faster then neutron decay, $\tau_{\text {dec }}=880 \mathrm{~s}$
... similar to neutron - antineutron oscillation but limits on $n-\bar{n}$ are strong:
Direct experimental Search: $\tau_{n \bar{n}}>0.86 \times 10^{8} \mathrm{~s} \quad$ Baldo Ceolin et al., '95
Nuclear stability: $\quad \tau_{n \bar{n}}>1.3 \times 10^{8} \mathrm{~s}$
PDG '2011

$$
\text { c.f. } \tau_{p}>10^{33} \text { yr (!!) for proton decay }(\Delta B=1)
$$

!!! N.B. Nuclear Stability

- $n-\tilde{n}$ destabilizes nuclei: $(A, Z) \rightarrow(A-1, Z, \tilde{n}) \rightarrow(A-2, Z)+\pi$'s

$$
\tau_{n \tilde{n}}>10^{8} \mathrm{~s} \text { or so } \ldots
$$

- $n-n^{\prime}$ does not: $(A, Z) \rightarrow(A-1, Z)+n^{\prime} \quad$ forbidden for stable nuclei by energy conservation ! - no restriction for $\tau_{n n^{\prime}}$!

Neutron - antineutron oscillation in external fields

Effective (non-relativistic) 4×4 Hamiltonian for $n-\tilde{n}$ oscillation

$$
H=\left(\begin{array}{cc}
m+V_{\mathrm{g}}+V_{n}-i\left(\frac{\Gamma}{2}+W_{n}\right)+\mu \vec{B} \vec{\sigma} & \epsilon \\
\epsilon & m+V_{\mathrm{g}}+V_{\tilde{n}}-i\left(\frac{\Gamma}{2}+W_{\tilde{n}}\right)-\mu \vec{B} \vec{\sigma}
\end{array}\right)
$$

- CPT: $m_{\tilde{n}}=m_{n}, \Gamma_{\tilde{n}}=\Gamma_{n}, \quad \mu_{\tilde{n}}=-\mu_{n}=1.91 \mu_{N}$
- Grav. potentials $V_{\mathrm{g}}^{\tilde{n}}=V_{\mathrm{g}}^{n}$
- Magnetic field: creates Energy gap $|\mu B|=B[\mathrm{G}] \times 6 \cdot 10^{-12} \mathrm{eV}=9000 \mathrm{~s}^{-1}$
$n-\tilde{n}$ oscillation probability in magnetic field \vec{B}

$$
P_{n \tilde{n}}(t)=\frac{\epsilon^{2}}{\omega^{2}+\epsilon^{2}} \sin ^{2}\left(\sqrt{\omega^{2}+\epsilon^{2}} t\right) \approx \frac{\epsilon^{2}}{\omega^{2}} \sin ^{2}(\omega t) \quad \omega=|\mu B|
$$

When $\omega t \ll 1: \quad P_{n \tilde{n}}(t)=\left(t / \tau_{n \tilde{n}}\right)^{2}, \quad \tau_{n \tilde{n}}=\epsilon^{-1}$
Magnetic field suppression is needed : for $t \sim 0.1 \mathrm{~s}, \quad B<10^{-4} \mathrm{G}$

Neutron - Mirror neutron oscillation in external fields

Effective (non-relativistic) 4×4 Hamiltonian for $n-n^{\prime}$ oscillation
$H=$

$$
\left(\begin{array}{cc}
m+V_{\mathrm{g}}+V_{\mathrm{m}}-i\left(\frac{\Gamma}{2}+W_{\mathrm{m}}\right)+\mu \vec{B} \vec{\sigma} & \epsilon \\
\epsilon & m^{\prime}+V_{\mathrm{g}}^{\prime}+V_{\mathrm{m}}^{\prime}-i\left(\frac{\Gamma^{\prime}}{2}+W_{\mathrm{m}}^{\prime}\right)+\mu^{\prime} \vec{B}^{\prime} \vec{\sigma}
\end{array}\right)
$$

- Exact mirror parity: $m^{\prime}=m, \Gamma^{\prime}=\Gamma, \quad \mu^{\prime}=\mu=-1.91 \mu_{N}$
- Grav. potentials $V_{\mathrm{g}}^{\prime}=V_{\mathrm{g}}$
- but there are magnetic fields: $\vec{B}^{\prime} \neq \vec{B}$: at Earth $B \simeq 0.5 \mathrm{G}$

In magnetic fields \vec{B} and \vec{B}^{\prime}, the oscillation probability becomes

$$
\begin{array}{r}
P(t)=\frac{\sin ^{2}\left[\left(\omega-\omega^{\prime}\right) t\right]}{2 \tau^{2}\left(\omega-\omega^{\prime}\right)^{2}} \cos ^{2} \frac{\beta}{2}+\frac{\sin ^{2}\left[\left(\omega+\omega^{\prime}\right) t\right]}{2 \tau^{2}\left(\omega+\omega^{\prime}\right)^{2}} \sin ^{2} \frac{\beta}{2}, \quad \text { ZB, EPJ C64, 421 (2009) } \\
\omega=\frac{1}{2}|\mu B|, \quad \omega^{\prime}=\frac{1}{2}\left|\mu B^{\prime}\right|, \quad \beta \text { angle between } \vec{B} \text { and } \vec{B}^{\prime}, \quad \tau=\tau_{n n^{\prime}}=\epsilon^{-1} \\
\text { Energy gap } \omega=\frac{1}{2}|\mu B|=B[\mathrm{G}] \times 3 \cdot 10^{-12} \mathrm{eV}=4500 \mathrm{~s}^{-1}
\end{array}
$$

At the resonance, $B=B^{\prime}$, when $\omega t \ll 1$: $\quad P_{n n^{\prime}}(t)=\left(\frac{t}{\tau_{n n^{\prime}}}\right)^{2} \cos ^{2} \frac{\beta}{2}$,

Experimental strategy for searching $n \rightarrow n^{\prime}$

Coherent neutron interaction with matter gives "optical" potential $V \sim$ few $\times 10^{-7} \mathrm{eV}$. Thus, if $V>0$, ultra-cold neutrons (UCN) with $E_{\text {kin }}<V$. i.e. $v<$ few m / s are reflected from the surface.
Thus, the UCN can be stored in the trap: The material wall of the trap acts as a potential well

If in the trap, during a free flight $\left(t_{f} \sim 0.1 \mathrm{~s}\right)$ between the wall collisions n oscillates to n^{\prime}, than it each wall collision it disappears from the trap with a mean probability $P(\vec{B})$

$$
\begin{aligned}
& \frac{d N}{d t}=\Gamma_{\text {eff }} N \quad \rightarrow \quad N(t)=N(0) \times e^{-\Gamma_{\text {eff }}} \\
& \Gamma_{\text {eff }}=\Gamma_{\text {dec }}+\eta_{\text {loss }} \nu+P(\vec{B}) \nu, \quad \nu=1 / t_{f} \sim 10 \mathrm{~s}^{-1} \text { collision frequency. }
\end{aligned}
$$

For different magnetic fields \vec{B}_{1} and \vec{B}_{2}, all regular (B-independent) contributions as well as $N(0)$ cancel out in the ratio $\frac{N_{1}(t)}{N_{2}(t)}=\frac{N(0) e^{-\Gamma_{1 \text { eff }}}}{N(0) e^{-T_{\text {eeff }}}}=e^{-\left(P_{1}-P_{2}\right) \nu t}$
Asymmetry $A_{B}=\frac{N_{\vec{B}}-N_{-\vec{B}}}{N_{\vec{B}}+N_{-\vec{B}}} \approx \frac{1}{2}\left(P_{\vec{B}}-P_{-\vec{B}}\right) \nu t_{s}=D_{B} \cos \beta \nu t_{s}$,
On-off Effectivity $E_{B}=1-\frac{N_{\vec{B}}+N_{-\vec{B}}}{2 N_{0}} \approx \Delta_{B} \nu t_{s}, \Delta_{B}=\frac{1}{2}\left(P_{\vec{B}}+P_{-\vec{B}}\right)-P_{0}$

Effectivity of D_{B} and Δ_{B}

$$
P_{0}=\frac{\epsilon^{2}}{2 \omega^{\prime 2}}=\frac{2}{\left.\tau_{n n^{\prime}}^{2} \mu \mu^{\prime}\right|^{2}}
$$

- Present Cosmology

- Parallel sector
- Mirror World
- Alice
- Alice
- Interactions
- B \& L violation
- BBN demands
- See-Saw
- See-Saw
- Neutron mixing
- Oscillation
- Experiment
- Vertical B
- Vertical B
- Oscillation
- Vertical B
- Parallel sector
- Alice
- Neutron mixing
- Neutron mixing
- Oscillation
- Oscillation
- Vertical B - Vertical B
E.g. assume $B^{\prime}=0.12$ Gauss

Global analysis - assuming constant mirror field B^{\prime}

Neutron - Mirror neutron mixing in astrophysics

- Present Cosmology
- Parallel sector
- Mirror World
- Alice
- Alice - Interactions

So $n-n^{\prime}$ transition is impossible for neutrons bound in nuclei it ican be tested only with free neutrons
where one can have free neutrons apart of reactors/spallation sources ?
(I already described the experimental status)

- neutrons in ultra-high energy cosmic rays: $n \rightarrow n^{\prime}$ and $n^{\prime} \rightarrow n$ would modify the UHECR spectrum around GZK energies Z.B and Bento 2005, Z.B. and Gazizov 2011
- neutrons from the sun (solar flares): $n \rightarrow n^{\prime} \rightarrow n$ transition could bring to neutron detection behind the Earth

Mohapatra, Nasri and Nussinov, 2005

- at the BBN epoch ($t \sim 1-200$ s), before the capture of all survived neutrons in helium etc.: $n^{\prime} \rightarrow n$ could lead to time delayed injection of neutrons from (neutron reach) mirror sector which could solve lithium-7 problem without troubling deuterium abundance

Coc, Uzan, Vangioni and Pospelov, 2014

- $n-n^{\prime}$ transitions may have interesting implications for neutron stars (mass/radius problem, transition to quark stars, etc.) strongly suppressed by large chemical potential ($\sim 200 \mathrm{MeV}$) - good calculations are needed

Physics underlying $n-n^{\prime}$ mixing

- Cogenesis of baryon and dark matter. Primordial baryon asymmetry generated via $\Delta B=1$ processes like $u d d \rightarrow u^{\prime} d^{\prime} d^{\prime}$. The similar (and somewhat larger) baryon asymmetry is generated in the Mirror sector. This naturally explanains the origin of the baryonic and dark matter balance in the Universe: $\Omega_{D} \sim \Omega_{B}$.
N.B. This mechanism requires collaboration of $\Delta B=2$ processes like $u d d \rightarrow \bar{u} \bar{d} \bar{d}-$ (neutron-antineutron $n-\tilde{n}$ oscillation, $\Lambda-\tilde{\Lambda}$, etc.).
They should be also active though could be much slower. Hence, should the $n-n^{\prime}$ oscillation detected at the level $\tau_{n n^{\prime}}<10^{3}$ s, (i.e. $\mathcal{M}_{n n^{\prime}} \sim 10 \mathrm{TeV}$) it would give a strong argument that $n-\tilde{n}$ oscillation should also exist at the experimentally accessible level - with the relevant cutoff scale $\mathcal{M}_{n \tilde{n}} \sim 1 \mathrm{PeV}$ and thus $\tau_{n \bar{n}} \sim 10^{9} \mathrm{~s}$.
- Can be tested at LHC, PSI, etc. at least some messengers betwen udd and $u^{\prime} d^{\prime} d^{\prime}$ must be light enough to be born at the TeV scale. In particular, $n-n^{\prime}$ mixing maybe related to R-parity violating physics in SUSY, to flavor symmetry, etc.

$n-n^{\prime}$ oscillation and propagation of UHECR

Z. Berezhiani, L. Bento, Fast neutron - Mirror neutron oscillation and ultra high energy cosmic rays, Phys. Lett. B 635, 253 (2006).
A. $p+\gamma \rightarrow p+\pi^{0}$ or $p+\gamma \rightarrow n+\pi^{+} \quad P_{p p, p n} \approx 0.5 \quad l_{\mathrm{mfp}} \sim 5 \mathrm{Mpc}$
B. $n \rightarrow n^{\prime} \quad P_{n n^{\prime}} \simeq 0.5 \quad l_{\mathrm{osc}} \sim\left(\frac{E}{100 \mathrm{EeV}}\right) \mathrm{kpc}$
C. $n^{\prime} \rightarrow p^{\prime}+e^{\prime}+\bar{\nu}_{e}^{\prime} \quad l_{\mathrm{dec}} \approx\left(\frac{E}{100 \mathrm{EeV}}\right) \mathrm{Mpc}$
D. $p^{\prime}+\gamma^{\prime} \rightarrow p^{\prime}+\pi^{\prime 0}$ or $p^{\prime}+\gamma^{\prime} \rightarrow n^{\prime}+\pi^{\prime+} \quad l_{\text {mfp }}^{\prime} \sim\left(T / T^{\prime}\right)^{3} l_{\mathrm{mfp}} \gg 5 \mathrm{Mpc}$

$n-n^{\prime}$ oscillation and the UHECR spectrum

Z. Berezhiani, A. Gazizov, Neutron Oscillations to Parallel World: Earlier End to the Cosmic Ray Spectrum?, Eur. Phys. J. 72, 2111 (2012)

UHECR flux with $n-n^{\prime}$ oscillation relative to the standard GZK prediction (normalized to "dip" model) for UHECR from ordinary and mirror sources Auger observes cutoff of the spectrum at $E \simeq 30 \mathrm{EeV}$, earlier than expected by GZK mechanism, $E \simeq 60 \mathrm{EeV}$
Positive predictions for energies at $E>100 \mathrm{EeV}$ (JEM-EUSO)

[^0]: - Present Cosmology
 - Parallel sector - Mirror World - Alice - Alice - Interactions - B \& L violation - BBN demands
 - See-Saw
 - See-Saw
 - Neutron mixing
 - Oscillation - Experiment
 - Vertical B
 - Vertical B - Oscillation
 - Vertical B
 - Vertical B - Parallel sector - Alice
 - Neutron mixing
 - Neutron mixing
 - Oscillation
 - Oscillation
 - Vertical B
 - Vertical B

