

Cryogenic light detectors for neutrino and dark matter searches

Marco Vignati Sapienza University and INFN Rome

What Next, LNGS 15-October-2014

α bkg removal in TeO₂

Rejection technique: detect the Čerenkov light emitted by β s (signal) and not by α s.

Noise of present light detectors is too high (70-100 eV RMS) compared to the signal (100 eV) \longrightarrow need new light detectors.

Sensitivity of the light detector

With a 100 eV signal, to obtain S/N > 5 we need a noise < 20 eV RMS.

Dark Matter with ZnSe

Identification of nuclear recoils in LUCIFER: nuclear recoils (signal) do not emit light, $\beta/\gamma s$ (background) emit a few light. The discrimination is in principle possible at 10 keV (the DM search region),

By using light detectors with noise below 20 eV RMS, LUCIFER could be a $0v\beta\beta$ and DM experiment at the same time.

M. Vignati

Which light detector technology?

- ? Neutron Transmutation Doped (NTD) thermistors, currently used in LUCIFER:
 - Average $\Delta E \sim 100 \text{ eV}$, too large. Not reproducible.
 - Could be improved using the Neganov-Luke effect.
- ? Transition Edge Sensors (TES), à la CRESST Dark Matter experiment:
 - ► ΔE < 20-30 eV, good!

R&D needed in view of the scale up to 1000 detectors:

- Complicated readout: SQUID amplifiers, small multiplexing.
- ? Magnetic Metallic Calorimeters (MMC), already used by AMoRE
 - ► In principle comparable to TES, but again require read-out R&D.
- ? Kinetic Inductance Detectors (KID): new technology invented at Caltech and JPL, first paper: P. Day et al., Nature, 425 (2003) 817:
 - Excellent reliability.
 - Easy readout: FPGAs and 1 cold amplifier, high multiplexing.
- But, need to develop a large area light detector to monitor bolometers.
 M. Vignati

KID: Working principle

High quality factor (*Q*) resonating circuit biased with a microwave (GHz): signal from amplitude and phase shift.

Multiplexed readout of a KID array

M. Vignati

A successful implementation

ARCONS: A 2024 Pixel Optical through Near-IR Cryogenic Imaging Spectrophotometer Mazin, B.A. et al, PASP, 123, 933, 2013.

M. Vignati

Light detector with KID sensors

	State of the art	goal	
Area	few mm	5x5 cm	difficult
ΔE [eV RMS]	< 1	< 20	achievable
Т	80	10	pro

Moore et al., Appl. Phys. Lett, 100 (2012) 232601

Other problem: area cannot be covered with 10³ KIDs, too demanding for electronics (in the future we will need 10³ light detectors).

CALDER's strategy

Indirect detection - à la CRESST

use a few KIDs (N_K =1-10) and athermal phonons in the substrate as mediators

Scientific challenge: sensitivity

Problem: loss of phonon collection efficiency (ε) through the supports and via thermalization:

Geometry R&D: maximize transmission to the KIDs ($p_K A_K$). Minimize support area (A_{supp}), transmission prob. to supports (p_{supp}) and substrate thickness (t_{sub}).

KID R&D: ε loss compensated by KID sensitivity: $\Delta E \propto \frac{1}{\epsilon} \cdot T_c \sqrt{\frac{N_K A_K}{QL}}$ 1) Maximize film quality factor: $Q > 10^5$.

2) High inductivity (L) and low T_c superconductors thanks to $T_{work}=10$ mK:

	ΑΙ	TiN (non stoich.)	Ti+TiN (stoich.)	Hf
Т	1.2	0.9	>0.4	0.12
L [pH/square]	0.05	3	30	3

CALDER Collaboration

Sapienza University of Rome:

KID Design, Cryogenic tests, Data Analysis. E. Battistelli, F. Bellini, L. Cardani, C. Cosmelli, A. Cruciani, P. de Bernardis, S. Masi and M. Vignati.

Istituto Nazionale di Fisica Nucleare: Tests at Gran Sasso Underground Lab. *C. Bucci, C. Tomei and M. Vignati (from 11/14).*

Consiglio Nazionale delle Ricerche: Detector fabrication.

I. Colantoni and M.G. Castellano.

Università degli studi di Genova: Electronics and DAQ.

S. Di Domizio.

Sapienza/INFN Lab in Rome

Nixa: electronics board developed at LPSC (Grenoble)

single cryogenic amplifier

2nd Prototype

- Single pixel area: 2.4 mm².
- 4 pixels coupled to the same feed line.
- Frequency: 2.6 GHz (spacing 15 MHz).
- 40 nm Aluminum lithography on Silicon substrate

Data

15

Status and program

- 2013-2014 Cryostat setup (reached 10-15 mK), readout (12 pixels in parallel up to now), data analysis, and first prototypes (9 and 4 pixels) with low Q.
- **2014-2015** Finalize production and test of Aluminum sensors at high Q, reach 50-100 eV baseline noise.

- **2015-2016** Develop and test TiN Ti/TiN sensors, reduce the number of pixels per detector (1-4), reach < 20 eV baseline noise.
- **2016-2017** Integration with the CUORE/LUCIFER setup at LNGS. Build a demonstrator with an array of TeO bolometers monitored by the new light detectors.

A new proposed project

EPIC-MAPS

Low temperature detector technology for broad band high energy resolution spectroscopy

DETECTOR CONCEPT

Operate Kinetic Inductance Detectors as quasi-equilibrium thermal sensors

- → Sensitivity limited by thermodynamic fluctuations
- \rightarrow Combine high efficiency, high resolution and high count rates

· IMPLEMENTATION -

- \rightarrow Exploit recent developments in superconducting materials with low, tunable T_c
- ➔ Simple readout thanks to the intrinsic frequency multiplexing of KIDs

DEMONSTRATOR

Realize a ready-to-use 1K-pixel X-ray detector to be deployed at a synchrotron facility

- APPLICATIONS

Short pulse X-ray sources, nuclear safeguard, astrophysics, neutrino physics, etc

LONG TERM VISION

Build an scientific community of interdisciplinary nature and establish Europe as a leader in this field

From S. Di Domizio

A new proposed project EPIC-MAPS

Project submitted for a H2020-FETOPEN-2014-2015-RIA grant

PI: A. Nucciotti (UniMiB)

Project duration: 4 years

10 Institutions involved

- Università di Milano-Bicocca
- Istituto Nazionale di Fisica Nucleare
- CNRS / Institut Néel and LPSC
- CEA/INAC/SBT
- Lund University
- Fondazione Bruno Kessler
- Consiglio Nazionale delle Ricerche
- Ruprecht-Karls-Universität Heidelberg
- Johann Wolfgang Goethe Universität
- MITO Technology

From S. Di Domizio

INFN

People: S. Di Domizio (GE, INFN PI), V. Bocci and M. Vignati (ROMA1) **Tasks**: electronics, signal processing, detector design and commissioning

