SEARCH FOR MAJORANA NEUTRINOS WITH BOREXINO

S. Marcocci Gran Sasso Science Institute

on behalf of the Borexino Collaboration

THE NEED OF TON SCALE EXPERIMENTS

- Recent theoretical updates
 on *Ovbb* worsen the
 expectations on new
 experiments sensitivities
- possibly, the IH won't be proved by next generation experiment
- ton scale is needed!

S.Dell'Oro, SM, F.Vissani, Phys. Rev. D 90, 033005 (2014)

"XEBEX" IDEA IS OLD

VOLUME 72, NUMBER 10

PHYSICAL REVIEW LETTERS

7 MARCH 1994

New Approach to the Search for Neutrinoless Double Beta Decay

R. S. Raghavan

AT&T Bell Laboratories, Murray Hill, New Jersey 07974
(Received 9 November 1993)

Sub-eV Majorana neutrino masses $\langle m_v \rangle$, can be explored by a new approach to neutrinoless double β decay using ¹³⁶Xe in a Xe gas-loaded, multiton liquid scintillator installed in a very low background detector such as the Kamiokande facility. With enriched ¹³⁶Xe, a readily implementable, 10 ton detector experiment can establish an $\langle m_v \rangle = 0.45$ eV at 3σ in 1 yr (or exclude an $\langle m_v \rangle < 0.23$ eV in 2 yr). A 100 ton detector can extend the limit to $\langle m_v \rangle < 0.1$ eV, compared with the present limit of $\langle m_v \rangle < 1.3$ eV.

PACS numbers: 29.40.Mc, 14.60.Pq, 23.40.Bw

- Since the Borexino proposal in 1992, a neutrinoless double beta decay search with ¹³⁶Xe in Borex has been considered!!
- This is where the idea of dissolving xenon in a liquid scintillator comes from

FEATURES OF THE PROJECT

- Xenon solubility in pseudocumene is pretty high (2,2% wt at 900mbar)
- · Thanks to Henry's law, solubility grows linearly with the pressure
- e.g at 5 bar solubility is more than 10%!
- Xe mass can be easily increased or reduced, no need of having all the isotope at the beginning, source in-source out possible
- and most importantly: Borexino is almost background free! Th< 9 10^{-19} g/g 95% C.L., U< 8 10^{-20} g/g 95% C.L., 7.1 cpd/100tons 95% C.L.

Kr<

OTHER 136XE EXPERIMENTS

Feature	EXO-200[1]	KamLAND Zen [2]	NEXT-100 (assumed) [3]	nEXO (from EXO-200) [4]	nEXO (assumed) [4]
Total Mass [kg]	200	348	100	12000*	12000*
Fiducial Mass [kg, 136Xe]	76.5	87.8	80	4302	4302
Enrichment [%]	80.6	90.77	90	90	90
FWHM Energy resolution[%]	3.6	9.9	0.5	3.6	3.6
2v in ROI [c ton(136Xe) ⁻¹ yr ⁻¹]	0.1	40	<0.1	0.1	<0.1
Other bkg in ROI [c ton(136Xe)-1 yr-1]	229	217	6.8	229	4.5-1.2 ***
Bkg in ROI [c ton(136Xe) ⁻¹ yr ⁻¹]	229	255	6.8	229	4.5-1.2 ***
Total bkg in ROI 5 y [c]	88	112	2.7	4934	97-16 ***
°T1/2 90% c.l. limit [yr]	1.1 10 ²⁵	1.3 10 ²⁵ *	<u>-</u>	-	-
^o T _{1/2} 90% c.l. sensitivity [yr] computed by us (their live time or 5yr if new exp.)	3.3 10 ²⁵	1.4 10 ²⁵	2.8 10 ²⁶	5.6 10 ²⁶	3.8-5 10 ²⁷ ***

- [1] Nature 510 (2014), 229-234
- [2] KamLAND-Zen's talk at Neutrino2014
- [3] J.J. Gomez Cadenas talk at Gran Sasso Summer Institute, LNGS, Sept. 2014
- [4] G. Gratta talk at LNGS, 19th Feb. 2014
- *assuming the same FV efficiency cut of EXO-200
- **KamLAND-Zen's limit is much better (2.6 1025 yr, REF). We used only phasell data (~110days exposure) to compare backgrounds
- ***The first number is computed using an assumed background of 6.1 10⁴ c/yr/mol-136 and a fiducial mass of 4302kg, while the second one assumes 1.6 10⁴ c/yr/mol-136 and a fiducial mass of 2700kg.

BOREX-XE CONFIGURATIONS

Feature	Current Borex *	Borex-Xe 4t **	Borex-Xe 7t ***
Total Mass [kg]	6200 ^a	18000°	30000ª
Fiducial Mass [kg, 136Xe]	1174	4295	7158
Enrichment [%]	90	90	90
FWHM Energy resolution[%]	6.7	4.2	4.2
2v in ROI [c ton(136Xe)-1 yr-1]	4	0.25	0.25
Other bkg in ROI [c ton(136Xe) ⁻¹ yr ⁻¹]	122	29	1.3
Bkg in ROI [c ton(136Xe) ⁻¹ yr ⁻¹]	126	29	1.5
Total bkg in ROI 5 y [c]	1007	630	51
^o T _{1/2} 90% c.l. sensitivity [yr] computed by us (their live time or 5yr if new exp.)	4.6 10 ²⁶	1.5 10 ²⁷	8 10 ²⁷

^aThis number assumes that Borexino Geometry is not changed at all. With a modification of the project this number could be dramatically decreased.

^{*}R=2.8m, p=1 bar

^{**}R=2.7m, p=3 bar, current background, LY~doubled

^{***}R=2.7m, p=3 bar, LY~doubled, background like current R<1m (should be easy, main contribution is ²⁰⁸Tl in light concentrators)