LUNA400 e LUNA-MV: presente e futuro dell'Astrofisica Nucleare al Gran Sasso

C. Gustavino INFN-Roma

- > Il Sole
- La Nucleosintesi Primordiale
- L' Evoluzione delle stelle

- Fisica dei neutrini
- Cosmologia
- > Astrofisica

What Next, 15 ottobre 2014, LNGS

Combustione dell'idrogeno nelle stelle

In quasi 20 anni di attività, L'esperimento LUNA ha studiato molte reazioni nucleari che regolano la combustione dell'idrogeno nel Sole e in altri corpi celesti:

- pp-chains,
- CNO cycle
- Ne-Na cycle
- Mg-Al cicle

..Con risultati di elevatissimo valore scientifico:

-Parametri di mixing del neutrino solare

- -Temperatura e metallicità del sole
- -Età dell'Universo
- -Evoluzione delle stelle
- -Abbondanze isotopiche

Neutrini solari

J. Bachall: "Historical breakthrough"

Dear Professors Corvisiero and Rolfs:

I am writing to you about a historic opportunity of which I first became aware at the recent meeting on Solar Fusion Reactions at the Institute of Nuclear Theory, Washington University. At this meeting, I had the opportunity to see for the first time the results of the LUNA measurements of the important 3He - 3He reaction in a region that covers a significant part of the Gamow energy peak for solar fusion. This was a thrill that I had never believed possible. These measurements signal the most important advance in nuclear astrophysics in three decades.

La Nucleosintesi primordiale

-Cosmologia -Susy -N_{eff} -Lepton degeneracy -Gravità Lo studio di queste reazioni serve a "calibrare" l'Universo dei primi 10 minuti, cioè la principale sorgente di elementi leggeri osservabili (D, ³He, ⁴He, ⁶Li, ⁷Li).

$$H^2 = \frac{8\pi}{3}G\rho$$

$$\rho = \rho_{\gamma} \left(1 + \frac{7}{8} \left(\frac{4}{11} \right)^{4/3} N_{\text{eff}} \right)$$

L'abbondanza primordiale dipende esclusivamente da: -Densità barionica -Fisica delle particelle -Sezioni d'urto Nucleari

Stretta connessione con CMB (PLANCK, BICEP2).

BBN: "fotografa" l'Universo dopo 10 minuti CMB: "fotografa" l'Universo dopo 380.000 anni.

Osservazioni dirette Elementi leggeri

Astrofisica Nucleare

BBN "Flowchart"

Cosmologia

Astrofisica

Review of Particle Properties

Particle Data Group

Nuova fisica?

Parametri "PDG" τ_n, G, N_{eff} ...

Passato recente: La reazione $D(\alpha,\gamma)^6Li$ e il "lithium problem"

- L'abbondanza osservata di ⁷Li è circa 3-4 volte inferiore del previsto.
- L'abbondanza osservata di ⁶Li sembra molto superiore del previsto (fattore 1000!)

- Possibili spiegazioni:
- -Sistematiche nelle osservazioni
- -Processi astrofisici sconosciuti
- -Fisica oltre il modello standard
- -Incertezza nelle sezioni d'urto nucleari

L'abbondanza di ⁶Li, dipende dalla reazione $D(\alpha,\gamma)^{6}Li$, che non era mai stata misurata prima di LUNA, alle energie BBN.

Prima misura diretta ad energie BBN della sezione d'urto $D(\alpha,\gamma)^{6}Li$ Si esclude con certezza un errore nei calcoli BBN. $S_{24}(134 \text{ keV}) = (4.0\pm0.8^{(stat)}\pm0.5^{(syst)}) \times 10^{-6} \text{ keV b}$ $S_{24}(94 \text{ keV}) = (2.7\pm1.5^{(stat)}\pm0.3^{(syst)}) \times 10^{-6} \text{ keV b}$ $(^{6}Li/H)_{BBN}=7.4\pm1.6 \times 10^{-15}$

Futuro Prossimo: la reazione $D(p,\gamma)^{3}He$

Primordial deuterium error budget (Di Valentino et al. 2014)

· · · · · · · · · · · · · · · · · · ·					
Reaction	Rate Symbol	$\sigma_{^{2}\mathrm{H/H}} \cdot 10^{5}$			
()					
$p(n,\gamma)^2 H$	R_1	± 0.002			
1/ $3TT$	D				
$a(p,\gamma)$ He	R_2	± 0.062			
$d(d n)^{3}$ Ho	D_{\circ}	± 0.020			
a(a,n) me	\mathbf{n}_3	± 0.020			
$d(d n)^{3}\mathbf{H}$	D .	± 0.012			
a(a,p) n	\mathbf{n}_4	± 0.013			

The error of computed deuterium abundance $(D/H)_{BBN}$ is mainly due to the $D(p,\gamma)^{3}He$ reaction, because of the paucity of data in the BBN energy region

Physics:

1) Cosmology: measurement of $\Omega_b h^2$. 2) Neutrino physics: measurement of N_{eff} . 3) Nuclear physics: comparison of data with theoretical "ab initio" predictions.

Reazione $D(p,\gamma)^{3}He$: Densità barionica

La densità barionica Ω_b si determina in modo completamente indipendente con gli esperimenti CMB e con l'abbondanza di deuterio, che è l'isotopo più sensibile a questo parametro.

 $100\Omega_{b,0}h^2(CMB)=2.20\pm0.03$ (PLANCK2013) $100\Omega_{b,0}h^2(BBN)=2.20\pm0.02\pm0.04$ (Cooke&Pettini 2013)

Osservazioni D/H _____ Reazione Dpy

Nota Bene:

 Ω_b (CMB) e Ω_b (BBN) si riferiscono a tempi cosmici differenti.

 $\Omega_b(CMB) \in \Omega_b(BBN)$ hanno errore confrontabile.

 Ω_b (BBN) può essere ridotto considerevolmente con una misura di precisione delle reazione Dpy

Reazione $D(p,\gamma)^{3}He: N_{eff}$ (numero di neutrini)

Fisica del neutrino: L'abbondanza del deuterio è sensibile anche al numero di famiglie di neuutrini. Con i dati in letteratura della reazione $D(p,\gamma)^{3}He$ abbiamo: N_{eff} (CMB) = 3.36±0.34 (PLANCK 2013) N_{eff} (BBN) = 3.57±0.18 (Cooke&Pettini 2013) $\stackrel{\scriptstyle \leftarrow}{\ }$ N_{eff} (SM) = 3.046

Nota bene:

- Buon accordo fra i risultati ottenuti da CMB e BBN.
- Entrambi suggeriscono la presenza di "radiazione scura".
- L'incertezza sperimentale sui dati relativi alla reazione D(p,γ)³He sono il principale ostacolo per migliorare questi limiti.

Reazione $D(p,\gamma)^{3}He$: Fisica Nucleare

Attualmente i dati su S_{12} differiscono del 20-30% rispetto alle calcoli "ab initio".

Una sezione d'urto in accordo con i calcoli teorici fornisce un accordo migliore fra CMB e BBN, nella direzione N_{eff} >3

Reazione $D(p,\gamma)^{3}He$: Possibile setup @ LUNA

BGO detector

Total cross section Vs Energy

Ge(Li) detector

Study of angular emission of photons

Experimental goals:

-Misura della sezione d'urto totale in un ampio intervallo di energia: 45<E_{lab}(keV)<400 -Precisione a livello del 3%. -Misura della sezione d'urto differenziale.

Conclusioni (Cosmologia e BBN)

Da una decina di anni siamo entrati nell'era della cosmologia di precisione

```
Per esempio:

\Omega_b error: 4.3% (WMAP2003) \rightarrow 1.4% (PLANCK2013)

(D/H)<sub>obs</sub> error: 8% (Cyburt 2006) \rightarrow1.6% (Cooke&Pettini 2013)
```

```
CMB

Misure di polarizzazione (BICEP2→LSPE)

BBN:

Osservazioni dirette \rightarrow Y<sub>p</sub>, D/H, <sup>3</sup>He/H, <sup>7</sup>Li/H, <sup>6</sup>Li/H

Astrofisica Nucleare \rightarrow

D(p,\gamma)<sup>3</sup>He \rightarrowabbondanza deuterio, LUNA400

D(\alpha,\gamma)<sup>6</sup>Li \rightarrowabbondanza <sup>6</sup>Li, LUNA-MV

<sup>3</sup>He(\alpha,\gamma)<sup>7</sup>Be \rightarrowabbondanza <sup>7</sup>Li, LUNA-MV
```

LUNA400 (2015-2018): $^{13}C(\alpha,n)^{16}O$ ${}^{12}C(p,\gamma){}^{13}N$ and ${}^{13}C(p,\gamma){}^{14}N$ ²²Ne(α,γ)²⁶Mg $^{2}H(p,\gamma)^{3}He$ ²²Ne(α,γ)²⁶Mg **Si-ignition** ⁶Li(p, γ)⁷Be O-ignition

LUNA-MV:

³He(⁴He,γ)⁷Be $^{12}C(\alpha, \gamma)^{16}O$ $^{13}C(\alpha, n) ^{16}O$ ²²Ne(α ,n)²⁵Mg

- Combustione dell'idrogeno in stelle >massive
- Evoluzione delle stelle nelle fasi \geq successive alla combustione dell'idrogeno
- S-process \succ
- Misure di precisione dei processi \succ della BBN

What next?

What next: Helium Burning

What next: s-process

Carbon burning & type Ia supernovae

 ${}^{12}C + {}^{12}C \rightarrow {}^{16}O + 2 {}^{4}He \\ \rightarrow {}^{20}Ne + {}^{4}He \\ \rightarrow {}^{23}Na + p^{+} \\ \rightarrow {}^{23}Mg + n \\ \rightarrow {}^{24}Mg + \gamma$

Reaction	Timescale	
Hydrogen burning	10 million years	
Helium burning	1 million years	
Carbon burning	300 years	
Oxygen burning	200 days	
Silicon burning	2 days	

Altre iniziative

Felsenkeller, Dresden

DIANA, USA

Un ulteriore sguardo al futuro..

Realizzazione al Gran Sasso di una struttura di eccellenza per misure di Fisica Nucleare Applicata, aperta ad utenti esterni.

-È opportuno, già da ora, riservare un'area attrezzata sufficientemente grande, in vista di futuri sviluppi.

-Creazione di un ambiente dotato di opportuna schermatura verso e di sistema di monitoraggio. Di assoluta priorità è infatti il consolidamento della fama del LNGS come laboratorio di "certificata" eccellenza per misure in condizioni di bassa radioattività.

Principali attività:

Astrofisica Nucleare:

-Evoluzione stellare (combustione di elio, carbonio, neon, silicio +S-process) -Processi BBN

-Electron Screening

Sinergia con ERNA (Caserta) e ASFIN (Catania) Analisi dei materiali (Ion Beam Analysis, IBA)

- -Beni Culturali
- -Monitoraggio ambientale

-biologia, cristalli, geologia...

Sinergia con STELLA (LNGS), LABEC (Firenze), CIRCE (Caserta)

Grazie per l'attenzione

Nuclear reactions in stars

Example of a chain 016+ He4 -> F19+ H' F19 + H1 -> Ne20 + hr Ne20 + He4 -> Na23 + H 1 $\begin{array}{rcl} Na^{23} + H^{2} & \rightarrow & Mg^{24} + h\nu \\ Mg^{24} + He^{4} & \rightarrow & A\ell^{27} + H^{1} \\ A\ell^{27} + H^{2} & \rightarrow & S\iota^{28} + \nu \\ S\iota^{28} + He^{4} & \rightarrow & P^{31} + H^{1} \\ P^{31} + He^{4} & \rightarrow & S^{34} + H^{1} \\ S^{34} + He^{4} & \rightarrow & C\ell^{37} + H_{1} \\ C\ell^{37} + He^{4} & \rightarrow & A^{40} + H_{1} \\ \end{array}$ A40 + He4 -> (43 + h

Molti cicli sono presenti nelle stelle. Di solito I più importanti sono i processi che determinano la velocità del ciclo e quelli che si trovano in una biforcazione

D(p,γ)³He reaction: Angular distribution

Doppler effect and high resolution Germanium detector to extract the angular distribution.

Validation test: october 2014.

210Bi →210 Po + e- + ve

The Lithium Problem(s)

Basic Concepts to unfold primordial abundances •Observation of a set of primitive objects (born when the Universe was young) •Extrapolate to zero metallicity: Fe/H, O/H, Si/H -----> 0

Lithium observations

•⁷Li primordial abundance: observation of the absorption line at the surface of metal-poor stars in the halo of our Galaxy

 ⁶Li abundance : observation of the asymmetry of the ⁷Li absorption line.

(n,n' γ) reaction on the surrounding materials (lead, steel, copper and germanium) γ -ray background in the RoI for the D(α , γ)⁶Li DC transition (~1.6 MeV)

Neutron flux inside LNGS (GEANT simulation)

Possible location of the 3.5 MV accelerator

³He(³He,2p)⁴He

Goal: Reject (or establish) a nuclear solution for the solar neutrino problem, by searching for a possible resonance inside the solar Gamow peak

3 He(4 He, γ) 7 Be

Goal: After the discovery of neutrino oscillation, the solar neutrino are back to study the Solar interior.

Three objectives for the LUNA measurement:

- Lowest energy ever reached (90 keV)
- •Lowest uncertainty (4%)

•Simultaneous measurement of prompt and delayed γs (systematic discrepancy od previous

The AMS measurement

Results of the ²⁶Al/²⁷Al measurement

Sample	Total time	Experimental	Error
	(s)	ratio(a.u)	(%)
S1	11270	9.06e-12	0.8
S2	11270	8.90e-12	0.9
BLK 1	11270	3.5e-14	37
V1	11270	1.51e-11	0.6
M11	11270	8.78e-12	0.7

ωγ results (ωγ_{gs}/ωγ=88.5 %)

	Iliadis (γ-meas.)	Arazi (AMS)	PD070701_7 (AMS-meas)
ωγ _{gs} (meV)	25+/-4	2.1+/-0.2	23.9+/-0.4
ωγ tot(meV)	29+/-4	2.4+/-0.2	27.5+/-0.4

¹⁴N(p, γ)¹⁵O: L'età dell'Universo

Verso la fine della loro vita, le stelle escono dalla sequenza principale (turnoff) e bruciano l'idrogeno residuo attraverso il ciclo CNO, la cui efficienza è regolata dalla reazione ¹⁴N(p,γ)¹⁵O.

La misura di LUNA ha permesso di stabilire che l'età delle stelle degli ammassi globulari calcolata precedentemente, era sottostimata di quasi un miliardo di anni.

Età dell' universo (LUNA): 14.5 ± 1 Gyears Età dell' universo (PLANCK): 13.81 ± 0.06 Gyears

