Directional Dark Matter using LAr

G. Fiorillo Università Federico II and INFN Napoli

The case for a directional dark matter detector

• WIMPs are still excellent candidates for particle dark matter

SUSY WIMPs with masses > 50 GeV - 100 TeV and cross sections: $10^{-45} - 10^{-49}$ cm²

WIMP scattering down to the "neutrino floor"

Observation of a few WIMP-like events might not be enough to claim discovery

background discrimination

• A sidereal variation of WIMP wind from Cygnus i.e. a substantial anisotropy in nuclear recoils is expected

no terrestrial background can mimic a sidereal directional modulation

Directionality might be key to the discovery!

- ton to multi-ton scale experiments in preparation will probe the full space of parameters for a

Directionality of WIMPs

• WIMP halo \rightarrow WIMP wind

Solar system orbit (~230 km/s)

Annual rate modulation

Earth orbit (±30 km/s, few % effect)

Background signal may be also annually modulated

Sidereal direction modulation

Angle between WIMP wind & E

Directionality signature (unique to WIMPs)

O(10) rate variation between forward and backward directions (large effect)

(anisotropic backgrounds in lab are isotropic in Galactic rest-frame)

A WIMP directional signal could (in principle) be detected with of order 10 events

[Copi, Heo & Krauss; Copi & Krauss; Lehner & Spooner et al.]

Towards WIMP Astronomy

Directional Dependence vs Annual Modulation

Hard for a background to mimic the directional signal.

as it drifts through the chamber.

Nuclear recoils in LAr

- Energy ≠ S1: energy deposited into 3 channels ("heat" prominent for NR, reducing their S1 & S2)
- Excitation and recombination lead to the S1, while escaping ionization electrons lead to the S2
- Divisions at each stage are functions of particle type, electric field, and dE/dx or energy

Columnar Recombination may display a sensitivity to the angle between nuclear recoil direction and drift field **E** in a LAr TPC

"Columnarity" is given by the aspect ratio between the nuclear recoil track range and the Onsager radius $r_0 = e^2 / \epsilon KT$

(the distance between a positive ion and a free electron for which the potential energy is balanced by the electron kinetic energy KT)

Do nuclear recoils retain directionality?

Tracks for Argon ions entering a liquid Argon target with a 60 keV recoil energy (superposition of 100 tracks of Argon ions originating in the same position and with a momentum whose initial direction is horizontal - SRIM simulation from C. Galbiati and F. Calaprice, WARP internal report, 2005)

A measurement campaign to verify the directional sensitivity of LAr detectors

SCENE concept

protons on thin LiF target to generate low energy, pulsed, monochromatic neutron beam

TOF between pulse proton beam, LAr TPC, liquid scintillator detectors for detection of scattered neutrons

Directionality in SCENE

Accelerated protons on thin LiF target generate low energy, pulsed, monochromatic neutron beam

Goniometer mount for the neutron detectors. Data simultaneously accumulated at a given neutron scattering polar angle but with recoils tagged as parallel or perpendicular to the drift field.

Initial momentum of nuclear recoil tagged by EJ1 is parallel to field EJ2 & 3 is perpendicular to field

Angular dependence from SCENE

Hint for anisotropy of 57.2 keV nuclear recoils

further investigation with more precise measurements and higher energies

Can we improve the sensitivity?

- Optimize the TARGET (less undesired gammas produced) ??
- More statistics (more beam time)
- More efficient neutron detectors ??
- A new TPC

Photosensor performance (fatigue, resolution)

Light Yield

Optimized design: drift length might be enlarged to reduce S1-S2 overlap

SCENE@UNINA

- Pulsed neutron beam at the TTT-3 Tandem accelerator
- Cryolab

Ar recirculation and purification

Clean Room facilities

• GAP-TPC: LAr TPC with high performance G-APD readout

explore scintillation and ionization in LAr with low energy NR

assess CR as a function of angle between track and field

Geiger mode-Avalanche Photodiode TPC

Large area G-APD arrays instead of 3" Hamamatsu R11065 PMTs

- Current commercial solutions (SensL, Hamamatsu, Advansid, etc.)
- Sensitive area equivalent to 3" PMT
- Cheap, robust, compact
- No fatigue but higher dark rate
- Very high resolution to SPE (few %)

GAP-TPC

R&D: our strategy

50 µm microcells (2668 µcells) 3x3 mm² pixel 47% PDE 6 • 10⁶ gain

Array of 4x4 3x3 mm² pixels 2.74 cm²

- SiPM arrays of different sizes + cryogenic read-out electronics to substitute Hamamatsu 3" PMTs
 - FBK involved in specific development through R&D agreement

Array of 12x12 3x3 mm² pixels 25.2 cm²

								2014-06 19:49:4	-12 13
1.34 mV	Diagram1: Ch1,Cl	n2						Horizontal s Res: 40 ns / Rec len: 1 MSa Scl: 4 ms/div Position: 880 ns	ettings 25 MSa/s RT v
						former des als serves in des ave		Mode: Normal Type-A: Edge V Level: -730.3 L	Ch1 JV
-660 μV								Ch1Wfm Pos: -0.72 d Off: 0 V Scl: 1 mV/c Cpl: DC 50s Dec: Sa TA	1 C liv div 2 a: Off
	telesente telesti territter (del tel	Dan Å Den De De Bernede	ai tean da an babaa	hda tiya an an din Ugada e	a na tanàn ing taona i	e Joen Jobil- daar	n hitte han a takka as	Pos: 2.66 di Off: -1 mV Sci: 1 mV/c Cpi: DC 509 Dec: Sa TA	div 22 N: Off
-4.66 mV	dava dang sebuah	an a she	and we want of the pairs	an da sa an	er en felen et blirken, ak ins	and a start of the	Second Constant of Second Second	e ferdir fajoren er i herrige som der	1) E 4 1 1 1 1 1 1 1 1 1
-5.66 mV				L			JRE		
-6 66 mV		Single ch <25Hz – green line							
	8ch output about 50 Hz – yellow line								
-7.66 mV									
-8.66 mV	-16 ms	-12 ms	-8 ms	-4 ms	CIS 4	ms 8	Ims 12	2 ms 16 m 5	

Dark Rate of 8ch negligible at LN temperature **VERY GOOD NEWS**

Huge dynamics (16x2700 µcells) limited by FE dynamics and not by photosensor (important feature for LAr-S2 large signals)

ROBUSTNESS: The array survived many cooling cycles

R&D current status: GAP-TPC

- Design readout board for the large array of 8x8 or 12x12 pixels (3 inches)
- Test in LN
- Upgrade existing LAr detector
- Compare the performance of Hamamatsu R11065 PMTs vs SiPM arrays (LY, SPE resolution, nuclear/ electron recoil separation)

GAP-TPC: LAr TPC with high performance G-APD readout will allow a measurement campaign towards Directional Dark Matter using LAr

R&D next step: enhance LY 4pi SiPM readout

Participating groups: UNINA & INFN-NA, INFN-LNGS, INFN-RM1, APC-IN2P3, Princeton, Temple, UCLA

