KM3NeT - stringhe

Topics:

- So-called 'KM3NeT Phase 1'
- Introduction/reminder to technical solutions
- Qualification
- Schedule
- Attività in Italia

KM3NeT Phase 1: DOMs and DUs

- 31 DUs (Detection Units) in Phase 1 (2014-2016):
 - 24 DUs in KM3NeT-IT
 - DU-1 and 6 more DUs in KM3NeT-FR possibility to adapt the last 6 DUs in a "ORCA-oriented" layout
- 18 DOMs (Digital Optical Modules) on each DU, spaced by 36 m

600 m

2

DOMs

- 31 PMTs of 3" photocathode in a 17" glass sphere
- Optical gel coupling between PMTs and glass
- Reflection rings around the PMTs to increase detection surface
- Electronics, optics for long-range communications and calibration devices installed inside the sphere
- Connection to the rest of the apparatus requires two conductors (+12 V power) and one fibre through a single penetrator

Exploded view of the DOM

4

- Long-term tests performed on various prototypes (by ETL, Hamamatsu, HZC) performed at various laboratories (NIKHEF, Erlangen, INFN Catania) with comparable results
- ETL vs. Hamamatsu: larger photocathode area, worse spurious pulse performance
- Pre-production of 600 Hamamatsu pieces (for first line) available
- First batch from production of 15,000 Hamamatsu PMTs delivered
- **REMARK:** new tender to be organized for last 6 DUs

ETL D792KFL

KM3Ne1

Hamamatsu R12199-02

Measurements of PMT time response (example plots)

Electronics

 Custom-made bases to produce HV for the PMTs and to extract the time-overthreshold (TOT) from the analogue signals

 Two signal collection boards ('octopusses') connect the PMTs to the Central Logic Board (CLB)

Main tasks of CLB:

- Control of PMTs and instrumentation (piezo-sensor, nanobeacon, monitoring devices)
- Hit digitization with sub-nanosecond time-stamping from the 31 PMTs
- Long-range communication with shore (with fixed latency): White Rabbit
- A power-board regulates all needed voltages from the input +12V

=> Various rounds of prototyping implemented this year for each board (converging toward marginal changes lately!)

Octopus connected to a set of PMT bases

Internal view of DOM

CLB (left) and power-board (right) in 'mushroom' structure

DOM internal mechanics

- PMT support structure to be produced with 3-D printing design (being) optimized for large production
- Cooling system to provide mechanical support and to efficiently transfer heat from the electronics to the glass sphere – sliding bar allows connection between the two hemispheres before closure
- Tray added inside DOM for fiber management
- Custom-design penetrator assembly performed at NIKHEF so far. Production to be outsourced (first batch being ordered).

Fibre management tray

DU mechanics

- Mechanical structure of the string based on two dyneema ropes, anchored on sea floor and kept taught by commercial top buoys (plus DOM buoyancy)
 - Robust and stiff arrangement
 - DOMs keep the correct attitude
 - String dynamics under control
- the VEOC (Vertical Electrical-Optical Cable) connects all DOMs to the DU base the VEOC is an oil-filled pressure-balanced hose equipped with 18 optical fibres (one for each DOM)
- DOM collars keep the DOMs in their positions
- A Break-out-box (BOB) is the interface between a DOM and the VEOC
 - Very simple structure hosting fibre splices and a DC/DC converter
 - A short cable (BEOC BOB Electrical-Optical Cable) connects the BOB to the DOM penetrator

VEOC

DU installation

• DU is packed on launcher vehicle (LOM) and installed on the anchor

• After deployment on sea bed, unfurling is done by operating an acoustic release

• LOM and acoustic release are recovered after operation

Arrangement on LOM (detail)

DU deployment

DU unfurling

Development plan

Staged process: • PPM-DOM • PPM-DU • Installation tests • Onshore qualification (leading to DOM-0) • DU-1 • Being prepared for this fall

Development plan

PPM-DOM

• Single, complete DOM with long-distance communication with shore

- Installed on instrumentation line of ANTARES at 2500 m depth in April 2013, operated smoothly since then
- Paper recently submitted

PPM-DU

- Reduced-size DU equipped with 3 DOMs
- Equipped with VEOC, deployed with LOM
- Installed at Capo Passero (3500 m depth) on 7 May 2014
- In smooth operation since then

Installation tests

- Various tests performed in sea and laboratory
- New deployment campaign performed in June 2014

Onshore qualification (incl. DOM-0)

- Electronics and optical system to be qualified onshore
- Environmental and pressure tests on critical components

PPM-DOM during deployment

DU-1

Final validation of all technical solutions will come with operation of first line

PPM-DOM

• Ready since fall 2012, deployed on April 16 2013 and operated smoothly since then

• Precious experience:

proof of concept
bench-mark of integration
experience in calibration, operation,
data taking and analysis
Very interesting results (rates, hit multiplicity, etc.
Paper submitted

• No proof for:

- **o String mechanics, VEOC and installation**
- **o** Final electronics and optical system

TOT control via HV tuning

Time difference in signals from a pair of PMTs

Coincidence rate vs. difference in PMT orientation

PPM-DU

- DOM1 and DOM2 equipped with ETL, DOM3 equipped with Hamamatsu PMTs
- Two top spheres for buoyancy
- Bottom section of VEOC built by putting together two sections of 36 m
- Jumper for connection to sea-bed infrastructure installed on anchor
- Construction in various laboratories, integration at NIKHEF, calibration in dark room at Marseille

Integration of PPM-DU (sel. pictures)

Lifting test of the anchor

Base container under test

Three DOMs and base container integrated with VEOC

Front and rear view of the shore station rack at NIKHEF

PPM-DU arranged in transportation box

14

Activities at CPPM

Laser and pattern generator used in dark room tests

PPM-DU with fibre network for calibration in the dark room

Installing the LOM on loader with fork lift (overhead crane *h.s.* at that time) s the INEN referees. Rome, 25, July 201

Loading the LOM

PPM-DU installation

- Performed with Nautical Tide, sailing from Malta 0
- **Deployment assisted by ROV** •
- Line positioned and oriented thanks to ROV 0
- Line position: 60 m from tower, 84 m from CTF (1 m off nominal) 0
- **Connection performed nicely at first attempt** 0
- Inspection of unfurled structure: everything in good order 0
- Acoustic release frame and LOM recovered directly from the ship 0

Last functional test in Malta

KM3NeT

Jumper arranged

ROV orienting the anchor of the PPM-DU

PPM-DU onboard the Nautical Tide

Connections on CTF

Status of PPM-DU

Communications ok

KM3NeT

- All PMTs active, except channel 14 of DOM2 (damaged during DOM integration) and channel 27 of DOM3 (disabled because of high rates and strange behaviour induced in the full DOM) – see next slide
- All devices operational except tiltmeter of DOM3 (ok at NIKHEF, not tested at CPPM, found *h.s.* since first test in the sea)

Measurements from piezo-sensors

Status of PPM-DU: PMTs

- ToTs and inter-PMT time offsets compare nicely with shore calibrations
- Inter-DOM time offsets seem stable (and understandable)
- Attempts to perform cross-calibrations with the tower
- 3-DOM coincidence events: muons! (investigations ongoing)

Installation tests

Various activities performed in the past years:

- First campaigns in Dec 2009 and Feb 2011: Validate the conceptual design and provided suggestions for improvements
- April 2013 @ Motril (Spain): 10 days for five deployments using two LOMs *Positive outcome, but:*
 - DOM penetrator gluing procedure wrong (led to leaks)
 - Cable management on the LOM to be improved
 - Rope spreading bars to be redesigned
 - Strengthen clip to hold VEOC to rope

Remark: full VEOC NOT tested because of penetrator problems

Hence:

- Dry test in laboratory to check mechanical components and close inspection of DOM release (Done at CPPM, Dec-2013)
- New sea campaign launched to test complete process with full mechanics and VEOC (performed 6-11 June 2014)

Clips holding extra-loop of VEOC on LOM

Done
 (& tested with the PPM-DU)

Installation tests at Motril, June 2014

- Installation at ~1000 m depth offshore Motril, Spain •
- Two LOMs prepared with full-size mechanical models of DU •
- **VEOC** equipped with electrical and optical loops for monitoring cable integrity 0
- Spheres loaded so as to reproduce weight of DOMs •

Main results:

- **VEOC** broken during unfurling of first unit problem ascribed to VEOC clips being too loose
- Unfurling of second structure performed after securing clips with tape no • problem for VEOC
- Small water leak into one sphere (ascribed to hemisphere sealing) ۲
- Post-recovery investigations ongoing ۲

Taped clips on second unit

ROV inspection of unfurled structure KM3NeT meets the INFN referees, Rome, 25 July 2014

Preparing deployment

KM3Ne1

Onshore qualification

- Reminder: PPM-DOM and PPM-DU equipped with prototype electronics and optical system
- Coordinated activities are ongoing for validation of final electronics and optical system

Wavelength tuning of the SFPs

KM3NeT

Angular acceptance of PMTs

Transfer function of charge vs. TOT

Light collection ring tests

Set-up (left) and test results (above) for White-Rabbit validation

Recent progress

- Test bench set up for optical system for KM3NeT-FR, to be used later for KM3NeT-IT
- Simulations ongoing of optical and power system for KM3NeT-FR and KM3NeT-IT
- Optical system design finalized, choice of SFP made
- White Rabbit upgrade implemented for usage inside KM3NeT White Rabbit communications established
- Electronics extensively tested final versions of electronics reached
- Test scenario of PMTs and electronics defined tools under development

Remarks concerning integration:

- PMT tests to be done at Naples and Erlangen
- DOM integration to be done at Naples, Catania, NIKHEF, Erlangen nominal speed at regime 5 DOM/site/week
- DU integration to be done at NIKHEF and Marseille plus possibly Catania nominal speed at regime 1 DU/site/month

Milestones (dettate dai vincoli in Francia e Italia, in particolare il PON)

- Installation of MEOC and node at KM3NeT-FR in fall 2014
- Installation of 2 JBs at KM3NeT-IT in fall 2014
- [Installation of (at least) two towers at KM3NeT-IT in fall 2014]
- Qualification completed, PRRs performed in September 2014
- Production of first set of 72 DOMs in October-November 2014
- DU-1 ready by end 2014
- Mass productions of DOMs and DUs from January 2015
- Installation of DU-1 in France in early 2015
- Installation of first set of DUs at KM3NeT-IT in spring 2015
- Installation of new CTF and 2 additional JBs at KM3NeT-IT in spring 2015
- Installationg of Phase 1 completed in 2016

Principali attività in Italia

- Bari: Technical Coordinator (Marco Circella); risk analysis; base container; modello meccanico e disegno generale della linea; prototipaggio
- Bologna: coordination del DAQ (Tommaso Chiarusi); DAQ system; elettronica di test
- Catania: integrazione dei DOM e, in prospettiva DU; test su PMT e integrazione DOM
- Genova: elettronica (CLB)
- LNS: coordination di calibrazione (Giorgio Riccobene) e power system (Rosanna Cocimano); coordination del WG di v-astronomy (Rosa Coniglione); sistema di alimentazione delle stringhe; acustica; installazione stringhe; shore station; produzione di una varietà di componenti
- Napoli: installazione delle basette sui PMT; test dei PMT; integrazione dei DOM
- Pisa: ancora
- Salerno: DB e DAQ control
 - + data analysis, simulations: tutte le sedi (in particolare BO e LNS)
 - + Mauro Taiuti presiede l'Institute Board
 - + Piera Sapienza presiede il Conference and Outreach Committee (COC)
 - + Annarita Margiotta è membro del COC, Paolo Piattelli del Publication Committee

+ Emanuele Leonora e Pasquale Migliozzi partecipano al Technical Coordination Team (in fase di definizione)