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Two fundamental questions

Polarization Measurements:

WHY? and HOW?



Polarization measurements: Why?

Apart from some more fundamental questions

(which would be outside the purpose of these

lectures),

Polarization Measurements (even of moderate

precision)

can be useful, e.g,

e To assign the parity (Electric or Magnetic)
to a transition of known multipole order

e To remove the ambiguity in the multipole
mixing ratio given by angular distributions

A couple of examples will better clarify these points.
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A (rather old) example (1990)

Problem:

Parity of the high-spin cascade
feeding the 8~ isomer of *’Eu
Measurements with ESSA30 at Daresbury
and MIPAD at LNL.

Linear polarization measurements

with a segmented Ge detector at LNL

for the 282 kev and 192 keV transitions

These results have been confirmed by
electron conversion coefficients

A.M. Bizzeti-Sona et al: Z. fiir Physik A, 337 (1990) 235.



A second example (2001)
From E.Farnea, Ph.D. Thesis

Problem: Multipolarity of the 5~ — 4 transition in %*Ge
Experiment: *°Ca(325,2a)%4Ge reaction
EUROBALL Il + ISIS at IReS Strasbourg

Multipole mixing ratio § from angular distributions:
arctg(d) = —5.1° or arctg(d) = —75.7°

Chi2 minima for 1665 keV.




A second example (2001)
From E.Farnea, Ph.D. Thesis

Problem: Multipolarity of the 5~ — 4% transition in 54Ge
Experiment: 40Ca(325,2a)%4Ge reaction
EUROBALL Il 4 ISIS at IReS Strasbourg

Multipole mixing ratio § from angular distributiol
and linear polarization (from Clover Detectors)
arctg(§) = —75.7°, § = —3.93

1665 keV | in 64Ge
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Polarization measurements: How?

e Azimuthal distribution of Compton scattering
e Polarized photon are preferentially scattered

in the plane perpendicular to the the Electric Field
e Examples of simple experimental set-up:

Segmented Ge detector EUROBALL Clover
One plane of sector separation along the polarization plane

Asymmetry [N(})/N(«>)] proportional to Polarization

Another (presumably better) solution:
Tracking of the Compton scattering with AGATA
explores the complete angular distribution



Layout of the rest of this talk

Theoretical preliminaries:
Polarization and Stokes parameters
Compton scattering and polarization
Measurements with AGATA
AGATA as a segmented detector
Agata as a tracking detector
MonteCarlo simulations
Introducing Polarization in MC results
comparison with CoulEx results
Perspectives for future improvements



Polarization and the Stokes parameters

Vector potential (plane electromagnetic wave)

A(7, t) = A(F) exp(—iwt), with E = —(1/c)dA/dt, B = rotA.
For a plane wave propagating in the direction &,
A(7) o (ax8 + ay €, ) exp(ikz) with axal + ayay =1

The three Stokes parameters are defined as

_ * *
P = axay — ayay,
* *
P, = axay, + ayag
. * *
P = i(axay —ayay)

For a pure state P? + P3 + P2 = 1.
e P3 = 41 for pure circular polarization;
e |P1|2 +|Py|> = 1 for pure linear polarization.
e Pp=+1(or —1)= A along e,(or e,)
o Pp=+1 = A along (e, + ey)/V2



Stokes parameters as matrix elements of the density matrix

For a statistical mixture of different polariation states k with
probability p(k) and Stokes parameters P;(k), Pa(k), Ps(k)
P, =>, p(k)Pi(k) and P}4+ P34+ P3<1.

In the helicity representation is expressed in terms of the Stokes
parameters:

| (A+P3)2 —(PL—iP)/2
P=1 (Pr+iP)/2  (1-Ps3))2

Stokes parameter do not transform as the component of a vector!
E.g., for a rotation of an angle ¢ around the e, axis,

P{ = Pycos(2¢) — Ppsin(2¢)

Py = Pisin(2¢) + Pacos(2¢)
Py = P



Angular distribution of Compton scattering
for linearly polarised radiation

For a complete linear polarization of the photons (moving in the
direction of the axis z with electric field E along the x axis)

2 N\ 2 /

do(0,0¢) = 0 <V> <VO + 2 — 24 4cos? @E> dQ
4 \ 1 vy

with 19 /v =1+ (1 — cos¥), a = hvg/mgc?

and 6 is the scattering angle.

The dependence on the azimuthal angle ¢ (between the scattering

plane and the plane xz) is contained in the angle ©¢ between the

electric field of the primary photon and of the scattered photon.



Azimuthal distribution of Compton scattering

If the polarization of the scattering photon is not measured,
cos? O can be replaced by its average value (over polarization
states of the scattered photon)
cos2 O = (1 —sin?f cos® p) /2
to obtain
g (v 2 Vo
do(8,p) = — | — + — + sin A(1 — cos 2¢) | dQ
4 \ g v
For unpolarized radiation, taking the average over ¢

2 I 2
do(8) = %0 <V> (VO —i———i—sm 9> dQ

Yo




Compton scattering for a partially polarized radiation

For a radiation characterized by the Stokes parameters P;, P>, P3
the differential cross section for Compton scattering at angles 8, ¢,
summed over polarization states of the outgoing radiation, is

2 I\ 2 /
do(0,p)= o <V> [VO+—sm 0 (1 — Pycos2p — P25|n2g0)] dQ

4 \ g v 0]
rg v\ v v
:4<1/0) [u +——sm 0{1— Pcos2(yp — 900)}] dQ

with P =/P?+ P2 and Yo = %arctg(Pg/Pl)
In the following,we always choose a reference frame in which
P,=0, P =P.



Analysing power versus scattering angle
The analysing power at the scattering angle 6 can be defined as

_ do(0,7/2) —do(6,0) sin? 0

A(6) = _
do(6,7/2) +do(6,0) % + Z—; —sin? 6
’ E.2DNW -~
E.o 1N -
E.=2NW ..
. E_=3Nw 4
as E.=6NeY
E,=TNe¥ -
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(from Alikhani et al, NIM A 675 (2012) 144)
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Theoretical preliminaries
Measurements with AGATA
AGATA as a segmented detector
The Darmstadt test experiment
Agata as a tracking detector
MonteCarlo simulations
Introducing Polarization in MC results
comparison with CoulEx results
Perspectives for future improvements



Polarization measurements with AGATA

Exploiting the 6 x 6 segmentation
of a single crystal?
Comparing N(<) with N(J):
Coincidences <: bc, ef, ad
Coincidences ] : ce, bf
are not equivalent!
Reference measurements
with unpolarized radiation
(and / or MonteCarlo simulation
are necessary!

N L

(from Akkoyun et al., NIM A 668 (2012) 26.

AV,
(9/5)



Compton Polarimeter with a 36—fold segmented
HPGe detector of the AGATA-type
Alikhani et al., NIM A 675 (2012) 144

e Experiment: Linear polarization of one of the
cascading v rays (1173 keV, 1332 keV) from

a %9Co source in coincidence with the other one.

e Set-up: One AGATA-type segmented Ge and two
supplementary detectors (coaxial Ge) to measure
rays emitted in coincidence at 90° to one another.
e Selection criteria: Only events with full energy
spent entirely in two interactions.

Threshold for energy release ~ 30 keV.

e Reference data: Unpolarised radiation

not in coincidence with supplementary detectors.



Compton Polarimeter with a 36—fold segmented
HPGe detector of the AGATA-type
Alikhani et al., NIM A 675 (2012) 144
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are attributed to its
center-of-mass.



Results

Angles 0 and ¢ referred to the center

of mass of the volume element.

Selection on # from 15° to 165° e e
| cosf] < 0.97 O .

Values of ¢ binned in 36° intervals, ? =
symmetrized with respect to 90°

Fraction of events in the bin ¢;: ' ; -
F(i) = Zkeap,- Nic / 22k Nk v

Asymmetry for the bin y; b oom Ny
A(’) = Fcoinc / Funpol "

Polarization efficiency @ defined by gl

A(E,) = 3P(E,)Q(E,): L ot e

Q(1173 keV) = (22.8 4+ 2.6)1072 -

Q(1332 keV) = (19.2 £ 0.9)102 " om

Cormpion Scamering Ange & (



MonteCarlo simulation .

Asymmatry A= (T)

Simulated asymmetry in
different bins of ¢ for
totally polarized radiation.

RN S

Upper panel: 1° bins
Lower panel: 36° bins
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Measuring linear polarization with AGATA:
PSA for identification of hit positions

If the position of every hit (and associated energy
release) as well as the time order of hits, are known,
one can determine the polar angle 6

and the azimuthal angle ¢ for the first Compton
scattering and deduce the linear polarization of the
incoming ~'s from the azimuthal distribution.

The hit positions can be derived from the measured

Pulse Shapes in the different elements of the
segmented crystal by means of the PSA procedure:



The test experiment at LNL

e Two AGATA triple clusters, mounted in the
AGATA demonstrator at LNL.

e Partially polarized + rays from CoulEx of 1%4Pd
(555.8 keV) and 198Pd (443.9 keV).

e Unpolarized 661 keV v rays from a '3’Cs source.



Linear polarization for CoulEx ~ rays

e Reaction: 32 MeV 2C beam onto 1 mg/cm?
thick 10419%8pPd targets.
e Almost all Pd recoils stop in the target
= Aligned (axial) symmetry for v emission.
= P, = 0 for Reference axis perpendicular
to the beam and to the y-emission direction.

e Linear polarization of o4
. 1P| 0 Pd

CoulEx v rays emitted 108py
at angle © to the beam 031

. ! 0.2
direction evaluated by 01k
means of the GOSIA code. 0'0 ,

0 90 180



The three steps of the data analysis procedure

For each event, the digitized shapes of signals
from the 36 elementary volumes of each crystal
are first stored in a sequence of disk files.

1. These data are analysed with PSA to derive
energies and positions (— Dino Bazzacco).
2.The output of PSA is sorted to reconstruct
the hit sequence (- Caterina Michelagnoli ).
3. Sorted data are analysed for the effects
of polarization (- Firenze).



The PSA procedure

At the moment, only one hit per volume element is
assumed. Only events with a single identified ~ ray
are used at later steps of the procedure.

The following information is recorded (in list mode):
For each ~:
Number of hits, total energy.
For every hit:
Counter Nr, element Nr; Released energy;
Space coordinates (on a 2mm lattice).

An option for reconstruction of data to be
attributed to a not-working channel is also provided.



Data sorting with mgt code

e As the 2mm lattice of hit positions produced by
PSA would result in unphysical spikes in the angular
distributions, hit coordinates are randomly spread
over a cube of 2mm a side around the original value.

e The most probable time sequence of hits is
reconstructed via a y2-like procedure.

e A first selection of events (e.g. discarding those
with one single hit) can be performed at this phase.

A (relatively small) fraction of errors is expected.
Their origin will be discussed later.



Data analysis

For each event we determine:
e The  emission angle ©, and polarization P(©,)
e The flight path rp,
e The polar scattering angle, as derived
# from the coordinates of the 1st and 2nd hit
costlg = o - 71/(f12f1)
# from the energy E; released at the first hit
cosl — 14 2 — i
e The azimuthal angle ¢

Events have been classified according to the counter
containing the first hit.



Further analysis for polarization

e Construction of the azimuthal angular distribution
f(¢; CoulEx) for the first Compton scattering of
CoulEx ~y rays (separately for each counter).

e Construction of the corresponding reference
distribution f(¢;ref) from 137Cs data.

e Evaluation of the distribution of ratios

R(p) = f(p; CoulEx) / f(y;ref).

e Fit of R(yp) with N (1 + Acos2¢) to obtain the
asymmetry coefficient A.

e The ratio of A to the average polarization P gives
the Analysing power.



Refinement of the analysis and instrumental effects

It would be easy to derive from the scattering angle
0 of each event the theoretical analysing power and
compare its average value with experimental results.
The direct comparison would be disappointing, due
to several instrumental effects which (although
irrelevant for normal spectroscopy measurements)
significantly reduce the measured asymmetry.
Namely

e Uncertainties in the hit position
e Tracking errors
e Unresolved hits

We will briefly discuss their effects.



Effects of Errors on the coordinates
We assume A3 =A2=A2xb/E,

If the tracking of the event is correct one can deduce (at the first
order) the statistical uncertainties on the scattering angles:

_ AN(E) + AY(E)

A2
# (l‘12 sin 0)2
5 [A)%(El)—f-A)%(Ez)] sinZ 6
Acosn9G = 2

6P
The error on ¢ determines a decrease of the coefficient of cos 2¢.
For a Gaussian distribution of the errors with variance A, the
reduction coefficient is (again,at the first order)

2
FA = 6_2AV’

BUT: Is the first order sufficient?
and how to determine the value of b?



Experimental investigations of errors on hit position
(from S. Akkoyun et al., NIM A 668 (2012) 26; P.A. Séderstr0 al., NIM A 638 (2011) 96.)
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Tracking errors

Tracking errors can result as a consequence of the finite precision

in the determination of hit positions.
Most of them (but not all!) will be
discarded by the strict selection criteria.
E.g., for E, > mec?, the tracking of
events consisting of only 2 hits is
affected by an unresolvable ambiguity for
a couple of angles 01 and 6, ~ 7 — 6,
such that E/(E,,01) = E, — E/(E,, 02).
In the distribution of cos for 137Cs and
104pq, a deep minimum at backward
angles is apparent. Missing events in this
region have been wrongly attributed to
the corresponding forward angle.

Counts per keV

137C5




Unresolved hits

In the current PSA procedure, only one hit per
volume element is assumed.

If the 'first-interaction point’ consists of two
unresolved hits:

e The energy release and the scattering angle do not
follow the Compton kinematics.

e The azimuthal angle ¢ keeps (almost) no memory
of the initial polarization.

For a realistic evaluation of all these
instrumental effects, a MonteCarlo simulation
is necessary. This will be the subject of the
second part of the lecture.



Selection criteria

e Total energy released in one triple cluster.

e Flight path of the scattered photon: ri, > 15mm
e Cuts on the scattering angle:

e \We require:

1.0

cos O

| cosf¢| < 0.35
| cosfg| < 0.35
| cos 0 —cos G|

<0.1

Correlation plot of
cosff vs. cosf¢

Solid lines: cosf = £0, 35




Selection on the scattering angle 6

Selection criteria:

|cosfg| <0.35 |cosfg| < 0.35

|cosfg — cosbg| < 0.1

3000

2000

1000

—1 —0.5 0 0.5
cosfg — cosfOg

Distribution of the difference
cosf¢g — cosOg

Black line: no cut on cos8g
Red line: | cosfg| < 0.35
(Counter C5)



Selection on total energy release
Selection thresholds: |E;or — E| < AE ~ 4 keV

Fraction of underlying

108}
10% background in the
2 104
o full-energy gate:
2 10
E 10° 108pg: ~ 3%
104 104PC|Z ~ 3%
ig: 137Cs: ~ 1%

400 450 500 550 600 650 700
E, [keV]

In case of a large underlying background it can be necessary to
subtract, from the distributions corresponding to the full energy
peak, those corresponding to an equivalent region of background.



Distributions of free path r;, for °Pd and *'Cs
Selection threshold: ri5 > 15mm.

coumers 1 The distributions
of distances ri, for
137Cs and 18Pd are
different due to the
different energy of
scattered photons
at equal angle 6.

103 e
F g 13705

Moreover, also the
angular distributions
in 6 are different.




Correction of the reference data

To remedy (at least partially) for these differences,
corrections to reference angular distributions in ¢
(different for 1%*Pd and 1%Pd ) must be introduced.
Namely, to each 3'Cs event is attributed a weight

W(Q):’M(E’/’d) exp[—u(Epy)ri2] do(Epg,0)/dS2
H(EL,)  expl—u(Eg)n2] do(Ecs,0)/dQ

For each bin ¢, in the reference ¢ distribution,
the resulting value and standard deviation are

N(gk) £N(p) = Y w(l) £ | Y w(6)

I € ¢k I € ¢k




Distributions of free path r, after correction

Counter 5

| realize now that

a further correction
could be introduced
for the different
distributions in depth
of the first Compton

interaction:
/ e #(Epg) ro1
w'(ro1) = e

But its effect would
be probably small.

137(:s
108Pd

¥’Cs corr

. PR IR B IS Y i
0 200 400 600 800 100
ry (10" mm) ri2i




Consistency of results for 1%Pd and *'Cs

The effects of polarization =0 [
cancel (almost exactly) o f
in the difference o |

N(¢) — N(p + )

If the analysis is correct,
the differences deduced
from angular distributions
of 1®Pd and 1¥"Cs
(normalised to equal area) |
should overlap exactly.

Rk i C4

N(p) — N(p+m)

o b by b b b b L 1y
0 20 40 60 80 100 120 140 160 180

P




Normalised ratios

Azimuthal distributions
Nce(p) (for CoulEx) and

Ny (@) (from Cs source)
evaluated for the crystal
containing the first interaction
(in this example, C4).

Counts per channel

sl b b b b b b
0—180 0 180

Normalized ratios R(() are deduced
from the symmetrized distributions

N*(p) = [N(») + N(p +7)]/2:
Nee(o)/ Nee
ref( )/ ref

R(p) =




Asymmetries (C4)
Apart from second order corrections®,

Normalised ratios can be fitted with
R(p) =1+ A cos2¢p

104Pd

0.5

20 180 ;0 360 0 180 360

We define the Analysing Power A = Q/2

from the relation A=A P(O)

* More exactly E(a/b) ~ [E(a)/E(b))/{1 + [D?(b)/E?(b)]}




Estimated Analysing Power

Analysing power

Analysing power
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AGATA simulation in GEANT4

Realistic simulations of AGATA counters, triple
clusters and various combinations of them
have been developed in the frame of GEANT4.

| want to acknowledge here, once more,
the fundamental contribution given by
Enrico Farnea.



MonteCarlo and Polarization

Early attempt to account for Polarization
in the first Compton scattering:
~ 1990 polarization in GEANT 3 (Firenze).

The current version of AGATA MC includes the
option for taking into account the polarization of
primary <y rays.

However we have preferred to simulate events with
a non polarized v and introduce corrections for
polarization later (as we did to derive reference
distributions from 13’Cs data, correcting for different
mean free path.)



How to introduce polarization in MonteCarlo results
simulated without polarization

Suppose a simulated event k contains n hits at
positions )?,- corresponding to a sequence of n — 1
Compton scatterings at angles 0;(k), pi(k).

For a primary v with linear polarization P, the
probability of this event would be Wp(k), while it is
Wo(k) for P = 0 as assumed by the MonteCarlo.
By definition, the MonteCarlo procedure attributes
equal weight to all the simulated events.

Instead, a weight w(k) = Wp(k)/Wos(k) will be
attributed to each event k, in order to deduce
simulated results for polarization P.



How to introduce polarization in MonteCarlo results
simulated without polarization (2)

As a consequence, in every bin B; of a simulated
distribution, the simulated content will be

N=> wlk) £ > w2(k)

kGBj kGBj

This is a hybrid procedure, half-way between pure
MonteCarlo and integration of the probability
density over the available space of parameters.
But, as we know, MonteCarlo itself can be
considered as a form of numerical integration.



Block Diagram of the procedure

AGATA GEOMETRY GEANT4 MC
with switch TIME

Primary MC results (1.1 G events)

SELECTING EVENTS WITH > 2 hits

Useful Data (more than 100 M events)

SORTING mgt with smooting | | SORTING mgt with smooting
no grouping, no errors hit grouping, position errors

" true’ data ‘sorted’ data

DATA ANALYSIS

Event # N, Event # N,
True © — P(O) Apply cuts
True 6, ¢ Sorted 6y, @4

WEIGHT W(N,)

Histogramming distribution of ¢, with weight W (N,)




Analysis
Three azimuthal distributions N(y) are obtained:
No(p) for P =0 (no polarization)
Ny () for P =1 (full polarization)
Np(p) for P as predicted for CoulEx.
Data are analysed separately according to the
crystal containing the first interaction.
Ratios R(y) shows the expected dependence on ¢:
Ri(p) = Ni(p)/No(p) oc 1 + Acos2p
Rp(p) = Ne()/No() o< 1 + A cos 2
where A is the Analysing power and A the
asymmetry (different for each counter) to be
compared with the experimental value.



BUT ....
is our complicated procedure really necessary?

One could use the results of 'Sorting with errors’
and adjust the error parameters to reproduce %*Pd.
Yes, but 1%Pd will not be reproduced.

In particular, for any choice of parameters,

the predicted analysing power will be

larger for 19%Pd than for !*Pd, at variance with
results of our procedure and experimental results.

This work is still in progress, and all data must
be considered as preliminary results.



A word of caution ....
In the present analysis, effects of the polarization
of the primary  are considered only in the first
Compton scattering.
Consequences on the further scatterings are ignored.
This is strictly valid for one Compton scattering,
followed by total absorption of the scattered photon.
In fact, polarization of photons emerging from each
Compton scattering will influence the azimuthal
distribution of the next one and therefore the
escape probability.
In principle, an exact calculation of W for more hits
is possible. We will come again to this point later.



Comparison of Experimental Results for ¥'Cs
with MC Simulations
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Comparison of Experimental Results for **Pd
with MC Simulations (with polarization)
and without polarization

C4 Ch5
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Comparison of Experimental Results for ®Pd
with MC Simulations (with polarization)
and without polarization

C4 Ch
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Experimental Results and MC Simulations
Distributions of Dcos = cosfg — cosflz  ( C4)

Selection criteria:
rip > 15mm; Eior = E, £ 4keV;
| cose, | < 0.35 | cosge | < 0.35.

 18pq !

Dcos



Experimental Results and MC Simulations
for Asymmetry ratios
Same selection criteria plus |Dcos| < 0.1

Experimental results: R(¢) =Pd / Cs
Simulated results:
simulation with expect P
divided by simulation with P =0
Two possible Methods:
simulations with and without P
#1 from the same set of MC data
#2 from independent sets



Comparison of Experimental Results
with Simulation Method #1  (counter C4)

104Pd 108 Pd
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Comparison of Experimental Ratios
with Simulation Method #1  (counter C5)




Comparison of Experimental Results
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Comparison of Experimental Results
with Simulation Method #2  (counter C5)




Comparison of MC Results for Ratios (counter C4)
with Method #1
and Method #2

Which one is preferable?
It depends on the particular purpose:

e Method #1:
More accurate,almost no fluctuations
Best used for Conclusions

e Method #2:
Realistic prediction of statistical errors
Best used for Proposals




Estimated Analysing Power (horizontal lines)
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Possible improvements

Although present results show already a reasonable
agreement between the analysis of experimental
results and MonteCarlo simulation, we think some
further improvement is possible on both.

e In the data analysis, e.g. in deriving from 13'Cs
data the 'reference distributions’ at the rather
different energy of 1%Pd.

e In the MonteCarlo simulation, evaluating correctly

the combined probability for the entire sequence of
Compton scatterings.



Some comments on the MonteCarlo simulation
for a sequence of Compton scatterings

Usually, MonteCarlo likes to work with a sequence
of independent events, associated to given
probabilities (cross sections). This is not possible in
our case, as it is necessary to save memory of the
polarization of intermediate photons (as it is
correctly performed in GEANT4).

To this purpose, it is not sufficient to know the
probabilities (cross section) for every step: we need
the transition amplitudes. We shall see how they
can be evaluated,



Pure polarization states

Pure polarization eigenstate:

for the photon: | >; for the electron: v =+1/2 >
Compton scattering amplitude from a pure state
| > to a pure state |p'v' >: f(E, 0, ; pv, 1/'t/))
The amplitude for a process of two consecutive
Compton scatterings, at angles 61, 1 and 65, ¢, is
the product of the two amplitudes, summed over
the polarization states of the intermediate photon.
Cross section from a pure state |pi41, > to a pure

state |usvivh > )

do o Z5/L/1’/,,2f(E1,91,gol;ﬂlyl,u’ll/i)f(Eg.Gg,pz;ugyguéué)

/li/t2



Mixed state !

We do not know the polarization of the two
electrons.
= Sum over the final electron polarizations
and average over the initial ones.
If also the final polarization of the photon is not
measured, the average cross section for the entire
process takes the form
d(rocf Z Z Z f*(E1, 01,01, prvapy ) F(Ez, 02, @o, pivapsrh)

1/11/ (vavh ph oyl

f(E1, 01, @1, pavipgvy)f(Ez, 02, @2, i vapin1sy)

This expression cannot be factorised. Polarization of
the intermediate photon must be taken into
account.



Polarization transfer

The 2 x 2 density matrices pg, p1 and py describe the polarization
of the initial, intermediate and final photon.
We define the poIarization transfer matrix

T(0, ¢; o, i1, 1oy, 144) Zf (0, ¢, poviigry ) (0, ¢, pavapiv})
Then vy

pr = T(E1,01,01)p0T(E2, 01, ¢1)

p2 = T(E2,02,02)p1 T (Ea,02,¢2)

T(Ez,02,92) T(E1.01,01)p0 T (E161, 1) T(Ez, 02, 2)
Average cross section (associated to the expectation value of the
operator O in the polarization space).
dg o< Tr(p202)
If the polarization of the final state is not observed, the operator
05 is the unit operator and do o« Tr ps .



The Compton cascade

Until now, we have considered the case of two
Compton scatterings, but the procedure can be
easily extended to an arbitrary number of
interactions in the Compton scattering chain.

This treatment of polarization can be inserted in the
MonteCarlo procedure by taking memory of the
polarization parameters (Stokes parameter) at each
step of the Compton cascade,



Thanks for your attention



Practical Session

INDEX
1 - 2 # Data files (sorted data)
from Legnaro experiment

3 - 4 # Algorithms for deriving the Compton
scattering angles

5 # Suggested exercises.

6 - 7 # Polarization of gammas from aligned states
(fusion-evaporation reactions)



1.- Data files:

dati-104pd.root exp. °*Pd
dati-137cs.root  exp. 13'Cs
mc-104pd-1.root MC %*Pd, partl
mc-104pd-2.root MC %4Pd, part2

sector-c.txt center of volume elements of the

6 counters in general coordinates.
Meaning of 'weight" (W)
dat-104pd.txt W =1
dat-137cs.txt W to construct reference for 1°4Pd
mc-104pd-*.txt W to construct distributions

for polarized ~ from Coulex

or put W =1 for no polarization



2.- Record structure of data files:

cosen, cosge, diffcos, phi,
enl, en2, etotd, r12, costetagamma,
ncl, nsecl, nc2, nsec2, ind3, nhits, weight

diff-cos= cos-en — cos-ge

ind3=1: energy entirely released in 1 crystal
=2: in 1 triple cluster
=3: in more clusters



3.- Algorithms for the Compton scattering angles
Here, the primary reference frame is defined as having the z axis
pointing to a symmetry axis of AGATA demonstrator and the x
axis perpendicular to it and to the beam direction. We define:

Beam direction: b =&, cosa + &,sin«
Coordinates of the v source: xs = ys =z =0
Coordinates of the first Compton interaction:
n=x1é& +y1é +z1&
Coordinates of the second interaction: > = X8, + y28, + 228,
Normal to the scattering plane: iy
Angle of yemission with respect to the beam axis: ©,
We can uase the relations:
ricos©, = b- n=yicosa+ zsina
risin©,n = bxr = (z1cosa — yrsina) &+ xysina &, — xp cosa &,
risin©, cos 1 = bx#-& =z cosa— y1sina
8, X (E X ) =x1cosa & + x1sina &, = x b

rysin ©,sin ¢, = [(bxA)xeéx]-b=—x



4.- Compton scattering

For the first Compton scattering:

Direction of the scattered ~: 712 = Fi2/|r2|, with Alp = — 1
Polar angle 6 between 71> and 7.

Azimuthal angle ¢ between the planes 75, 71 and b, 7 (or between
the normals to these planes, fi;2 and 71, both perpendicular to r7).
We obtain them from the relations

rir2cost = Ao - A = x1x12 + yiy12 + 21212

rnrio sinf = ’Fl X ?12|

A X A2 = (Y1212 — 21y12) 8 + (z21x12 — x1212) 8, + (X1y12 — Y1X12)&;,
cosw = Ny - Ao

sinap = |ﬁ1 X ﬁlz . 712|/r12



5.-Suggested exercises

Ratio of the azimuthal distributions
1.- Read the first data file in ROOT ntuple format
2.- Select events with proper cuts (variation around suggested
values are welcome).

Suggeste values: r12 > 15
|cos — en| < 0.35; cos —ge| < 0.35
|diff-cos| < 0.1

|Etotd —Etrue| < 4
with .8; Etrue(*37Cs)=661
ind3 = 2 (values 1 and 3 could be tried!)
nhits: no limits (a limit to nhits=2 could be interesting)
3.- Construct the histograms of ¢ with proper cuts and weights.
Suggested step 1° other values welcome.
4.- Optionally: Symmetrize: N*(¢) = N(¢) + N(p + 180)
5.- Repeat points 1 to 4 for the second file. 6.- Construct the ratio
of the relevant spectra (from 0° to 180°)
e.g. Pd / Cs(weighted) or MC(weighted) / MC(W=1)
7.- Fit with the function A+ Bcos2¢



6.- Polarization of gammas from aligned states
From Ferguson* Eq. 3.66:

Ay
PO, ="*
where () A
Ar = > pro(aa)(—)""?Zy(Lal'a, bk) &
kLL’
[ Pr(cos©,) + (=)™ Ki(LL')P3(cos ©,) ]
KLy — - =2 (k)

(k+2)! (L1, — 1]k0)

Where a (b) is the spin of the parent (daughter) state, L the
multipole order of the transition, and the exponent r of the
multipole mixing coefficient § is 0, 1 or 2 according to the number
of indexes L corresponding to the higher multipole.

.* D.J. Ferguson, Angular correlation methods in gamma-ray spectroscopy
(Amsterdam 1965). Eq. 3.66 contains an obvious printing error, see eq.-3.63...



7.- The coefficients

AN, AN

Zy(LbL''; ck) = (=)< HFE T LLBE (L1, L — 1]kO)W/(LbL'H'; ck)

where W(LbL'Y'; ck) = (=)L +b+b" W, (Lbc; b'L'k) is a Racah
coefficient, and [ = 2L + 1. The coefficients Z; are tabulated by
Ferguson. Px(cos®©.) is a Legendre polynomial, P?(cos©,) is an
associated Legendre polynomial.

The statistical tensors are expressed as a function of the density
matrix as

pre(a,a) =Y (=) (a a,a—d/|kr)(a alpla &)

aa’

For an aligned (axially symmetric) system x =0 and

pro(a:a) = Y (=)"*(a a,a— alk0) (a alpla a)

Maximum alignment: (a 0|p|a 0) =1 for a even,
(a £1/2|pla £1/2) =1/2 for a odd.



