EGAN - 3rd Data-Analysis School

LNL, October 1 - 3, 2014

MEASURING LINEAR POLARIZATION OF GAMMA RAYS WITH AGATA

> (Firenze - Padova - Legnaro Collaboration)

Pier Giorgio Bizzeti

Dipartimento di Fisica, Università di Firenze

Two fundamental questions

Polarization Measurements:

WHY? and HOW?

Polarization measurements: Why?

Apart from some more fundamental questions (which would be outside the purpose of these lectures),
Polarization Measurements (even of moderate precision)
can be useful, e.g,

- To assign the parity (Electric or Magnetic) to a transition of known multipole order
- To remove the ambiguity in the multipole mixing ratio given by angular distributions
A couple of examples will better clarify these points.

A (rather old) example (1990)

Problem:

Parity of the high-spin cascade feeding the 8^{-}isomer of ${ }^{142} \mathrm{Eu}$ Measurements with ESSA30 at Daresbury and MIPAD at LNL.
Linear polarization measurements with a segmented Ge detector at LNL for the 282 kev and 192 keV transitions

These results have been confirmed by electron conversion coefficients

A.M. Bizzeti-Sona et al: Z. für Physik A, 337 (1990) 235.

A second example (2001)

From E.Farnea, Ph.D. Thesis

Problem: Multipolarity of the $5^{-} \rightarrow 4^{+}$transition in ${ }^{64} \mathbf{G e}$ Experiment: ${ }^{40} \mathrm{Ca}\left({ }^{32} \mathrm{~S}, 2 \alpha\right){ }^{64} \mathrm{Ge}$ reaction
EUROBALL III + ISIS at IReS Strasbourg
Multipole mixing ratio δ from angular distributions:

$$
\operatorname{arctg}(\delta)=-5.1^{\circ} \text { or } \operatorname{arctg}(\delta)=-75.7^{\circ}
$$

A second example (2001)

From E.Farnea, Ph.D. Thesis

Problem: Multipolarity of the $5^{-} \rightarrow 4^{+}$transition in ${ }^{64} \mathbf{G e}$ Experiment: ${ }^{40} \mathrm{Ca}\left({ }^{32} \mathrm{~S}, 2 \alpha\right){ }^{64} \mathrm{Ge}$ reaction EUROBALL III + ISIS at IReS Strasbourg

Multipole mixing ratio δ from angular distribution and linear polarization (from Clover Detectors) $\operatorname{arctg}(\delta)=-75.7^{\circ}, \delta=-3.93$

Polarization measurements: How?

- Azimuthal distribution of Compton scattering
- Polarized photon are preferentially scattered in the plane perpendicular to the the Electric Field
- Examples of simple experimental set-up:

Segmented Ge detector

EUROBALL Clover

One plane of sector separation along the polarization plane
Asymmetry $[N(\downarrow) / N(\leftrightarrow)]$ proportional to Polarization
Another (presumably better) solution:
Tracking of the Compton scattering with AGATA
explores the complete angular distribution

Layout of the rest of this talk

Theoretical preliminaries:
Polarization and Stokes parameters
Compton scattering and polarization
Measurements with AGATA
AGATA as a segmented detector
Agata as a tracking detector
MonteCarlo simulations
Introducing Polarization in MC results
comparison with CoulEx results
Perspectives for future improvements

Polarization and the Stokes parameters

Vector potential (plane electromagnetic wave)
$\overrightarrow{\mathcal{A}}(\vec{r}, t)=\vec{A}(\vec{r}) \exp (-i \omega t)$, with $\vec{E}=-(1 / c) \partial \vec{A} / \partial t, \vec{B}=\operatorname{rot} \vec{A}$.
For a plane wave propagating in the direction \vec{e}_{z}
$\vec{A}(\vec{r}) \propto\left(\alpha_{x} \vec{e}_{x}+\alpha_{y} \vec{e}_{y}\right) \exp (i k z)$
with $\alpha_{x} \alpha_{x}^{*}+\alpha_{y} \alpha_{y}^{*}=1$
The three Stokes parameters are defined as

$$
\begin{aligned}
& P_{1}=\alpha_{x} \alpha_{x}^{*}-\alpha_{y} \alpha_{y}^{*} \\
& P_{2}=\alpha_{x} \alpha_{y}^{*}+\alpha_{y} \alpha_{x}^{*} \\
& P_{3}=i\left(\alpha_{x} \alpha_{y}^{*}-\alpha_{y} \alpha_{x}^{*}\right)
\end{aligned}
$$

For a pure state $P_{1}^{2}+P_{2}^{2}+P_{3}^{2}=1$.

- $P_{3}= \pm 1$ for pure circular polarization;
- $\left|P_{1}\right|^{2}+\left|P_{2}\right|^{2}=1$ for pure linear polarization.
- $P_{1}=+1$ (or -1$) \Rightarrow \tilde{A}$ along $e_{x}\left(\right.$ or $\left.e_{y}\right)$
- $P_{2}= \pm 1 \quad \Rightarrow \vec{A}$ along $\left(e_{x} \pm e_{y}\right) / \sqrt{2}$

Stokes parameters as matrix elements of the density matrix

For a statistical mixture of different polariation states k with probability $p(k)$ and Stokes parameters $P_{1}(k), P_{2}(k), P_{3}(k)$ $P_{i}=\sum_{k} p(k) P_{i}(k) \quad$ and $\quad P_{1}^{2}+P_{2}^{2}+P_{3}^{2} \leq 1$.
In the helicity representation is expressed in terms of the Stokes parameters:

$$
\rho=\left|\begin{array}{cc}
\left(1+P_{3}\right) / 2 & -\left(P_{1}-i P_{2}\right) / 2 \\
-\left(P_{1}+i P_{2}\right) / 2 & \left(1-P_{3}\right) / 2
\end{array}\right|
$$

Stokes parameter do not transform as the component of a vector! E.g., for a rotation of an angle ϕ around the e_{z} axis,

$$
\begin{aligned}
P_{1}^{\prime} & =P_{1} \cos (2 \phi)-P_{2} \sin (2 \phi) \\
P_{2}^{\prime} & =P_{1} \sin (2 \phi)+P_{2} \cos (2 \phi) \\
P_{3}^{\prime} & =P_{3}
\end{aligned}
$$

Angular distribution of Compton scattering for linearly polarised radiation

For a complete linear polarization of the photons (moving in the direction of the axis z with electric field \mathbf{E} along the x axis)

$$
\mathrm{d} \sigma\left(\theta, \Theta_{E}\right)=\frac{r_{0}^{2}}{4}\left(\frac{\nu^{\prime}}{\nu_{0}}\right)^{2}\left(\frac{\nu_{0}}{\nu^{\prime}}+\frac{\nu^{\prime}}{\nu_{0}}-2+4 \cos ^{2} \Theta_{E}\right) \mathrm{d} \Omega
$$

with $\quad \nu_{0} / \nu^{\prime}=1+\alpha(1-\cos \theta), \quad \alpha=h \nu_{0} / m_{0} c^{2}$
and θ is the scattering angle.
The dependence on the azimuthal angle φ (between the scattering plane and the plane $x z$) is contained in the angle Θ_{E} between the electric field of the primary photon and of the scattered photon.

Azimuthal distribution of Compton scattering

If the polarization of the scattering photon is not measured, $\cos ^{2} \Theta_{E}$ can be replaced by its average value (over polarization states of the scattered photon)

$$
\overline{\cos ^{2} \Theta_{E}}=\left(1-\sin ^{2} \theta \cos ^{2} \varphi\right) / 2
$$

to obtain

$$
\mathrm{d} \sigma(\theta, \varphi)=\frac{r_{0}^{2}}{4}\left(\frac{\nu^{\prime}}{\nu_{0}}\right)^{2}\left[\frac{\nu_{0}}{\nu^{\prime}}+\frac{\nu^{\prime}}{\nu_{0}}+\sin ^{2} \theta(1-\cos 2 \varphi)\right] \mathrm{d} \Omega
$$

For unpolarized radiation, taking the average over φ

$$
\overline{\mathrm{d} \sigma(\theta)}=\frac{r_{0}^{2}}{4}\left(\frac{\nu^{\prime}}{\nu_{0}}\right)^{2}\left(\frac{\nu_{0}}{\nu^{\prime}}+\frac{\nu^{\prime}}{\nu_{0}}+\sin ^{2} \theta\right) \mathrm{d} \Omega
$$

Compton scattering for a partially polarized radiation

For a radiation characterized by the Stokes parameters P_{1}, P_{2}, P_{3} the differential cross section for Compton scattering at angles θ, φ, summed over polarization states of the outgoing radiation, is

$$
\begin{aligned}
\mathrm{d} \sigma(\theta, \varphi) & =\frac{r_{0}^{2}}{4}\left(\frac{\nu^{\prime}}{\nu_{0}}\right)^{2}\left[\frac{\nu_{0}}{\nu^{\prime}}+\frac{\nu^{\prime}}{\nu_{0}}-\sin ^{2} \theta\left(1-P_{1} \cos 2 \varphi-P_{2} \sin 2 \varphi\right)\right] \mathrm{d} \Omega \\
& =\frac{r_{0}^{2}}{4}\left(\frac{\nu^{\prime}}{\nu_{0}}\right)^{2}\left[\frac{\nu_{0}}{\nu^{\prime}}+\frac{\nu^{\prime}}{\nu_{0}}-\sin ^{2} \theta\left\{1-P \cos 2\left(\varphi-\varphi_{0}\right)\right\}\right] \mathrm{d} \Omega
\end{aligned}
$$

with $\quad P=\sqrt{P_{1}^{2}+P_{2}^{2}} \quad$ and $\quad \varphi_{0}=\frac{1}{2} \operatorname{arctg}\left(P_{2} / P_{1}\right)$
In the following, we always choose a reference frame in which $P_{2}=0, P_{1}=P$.

Analysing power versus scattering angle

The analysing power at the scattering angle θ can be defined as

$$
A(\theta)=\frac{\mathrm{d} \sigma(\theta, \pi / 2)-\mathrm{d} \sigma(\theta, 0)}{\mathrm{d} \sigma(\theta, \pi / 2)+\mathrm{d} \sigma(\theta, 0)}=\frac{\sin ^{2} \theta}{\frac{\nu_{0}}{\nu^{\prime}}+\frac{\nu^{\prime}}{\nu_{0}}-\sin ^{2} \theta}
$$

(from Alikhani et al, NIM A 675 (2012) 144)

Layout

Theoretical preliminaries
Measurements with AGATA
AGATA as a segmented detector
The Darmstadt test experiment
Agata as a tracking detector
MonteCarlo simulations
Introducing Polarization in MC results
comparison with CoulEx results
Perspectives for future improvements

Polarization measurements with AGATA

Exploiting the 6×6 segmentation of a single crystal?
Comparing $N(\leftrightarrow)$ with $N(\uparrow)$: Coincidences $\leftrightarrow: ~ b c$, ef, ad Coincidences \downarrow : ce, bf are not equivalent! Reference measurements with unpolarized radiation (and / or MonteCarlo simulation) are necessary!
(from Akkoyun et al., NIM A 668 (2012) 26.
 R4

Compton Polarimeter with a 36-fold segmented HPGe detector of the AGATA-type Alikhani et al., NIM A 675 (2012) 144

- Experiment: Linear polarization of one of the cascading γ rays ($1173 \mathrm{keV}, 1332 \mathrm{keV}$) from $a{ }^{60} \mathrm{Co}$ source in coincidence with the other one.
- Set-up: One AGATA-type segmented Ge and two supplementary detectors (coaxial Ge) to measure γ rays emitted in coincidence at 90° to one another.
- Selection criteria: Only events with full energy spent entirely in two interactions.
Threshold for energy release $\approx 30 \mathrm{keV}$.
- Reference data: Unpolarised radiation not in coincidence with supplementary detectors.

Compton Polarimeter with a 36-fold segmented HPGe detector of the AGATA-type Alikhani et al., NIM A 675 (2012) 144

For each volume elements all interactions inside are attributed to its center-of-mass.

Results

Angles θ and φ referred to the center of mass of the volume element.
Selection on θ from 15° to 165°

$$
|\cos \theta|<0.97
$$

Values of φ binned in 36° intervals, symmetrized with respect to 90° Fraction of events in the bin φ_{i} :

$$
F(i)=\sum_{k \in \varphi_{i}} N_{k} / \sum_{k} N_{k}
$$

Asymmetry for the bin φ_{i}

$$
A(i)=F_{\text {coinc }} / F_{\text {unpol }}
$$

Polarization efficiency Q defined by $A\left(E_{\gamma}\right)=\frac{1}{2} P\left(E_{\gamma}\right) Q\left(E_{\gamma}\right):$
$Q(1173 \mathrm{keV})=(22.8 \pm 2.6) 10^{-2}$
$Q(1332 \mathrm{keV})=(19.2 \pm 0.9) 10^{-2}$

MonteCarlo simulation

Simulated asymmetry in different bins of φ for totally polarized radiation.

Upper panel: 1° bins Lower panel: 36° bins

Layout

Theoretical preliminaries
Measurements with AGATA
AGATA as a segmented detector
Agata as a tracking detector
The LNL CoulEx experiment
Analysis procedure
Problems from instrumental effects
Examples of results
MonteCarlo simulations
Introducing Polarization in MC results
comparison with CoulEx results
Perspectives for future improvements

Measuring linear polarization with AGATA:

PSA for identification of hit positions
If the position of every hit (and associated energy release) as well as the time order of hits, are known, one can determine the polar angle θ and the azimuthal angle φ for the first Compton scattering and deduce the linear polarization of the incoming γ 's from the azimuthal distribution.
The hit positions can be derived from the measured Pulse Shapes in the different elements of the segmented crystal by means of the PSA procedure:

The test experiment at LNL

- Two AGATA triple clusters, mounted in the AGATA demonstrator at LNL.
- Partially polarized γ rays from CoulEx of ${ }^{104} \mathrm{Pd}$ (555.8 keV) and ${ }^{108} \mathrm{Pd}$ (443.9 keV).
- Unpolarized $661 \mathrm{keV} \gamma$ rays from a ${ }^{137} \mathrm{Cs}$ source.

Linear polarization for CoulEx γ rays

- Reaction: $32 \mathrm{MeV}{ }^{12} \mathrm{C}$ beam onto $1 \mathrm{mg} / \mathrm{cm}^{2}$ thick ${ }^{104,108} \mathrm{Pd}$ targets.
- Almost all Pd recoils stop in the target
\Rightarrow Aligned (axial) symmetry for γ emission.
$\Rightarrow P_{2} \equiv 0$ for Reference axis perpendicular to the beam and to the γ-emission direction.
- Linear polarization of CoulEx γ rays emitted at angle Θ to the beam direction evaluated by means of the GOSIA code.

The three steps of the data analysis procedure

For each event, the digitized shapes of signals from the 36 elementary volumes of each crystal are first stored in a sequence of disk files.

1. These data are analysed with PSA to derive energies and positions (- Dino Bazzacco).
2. The output of PSA is sorted to reconstruct the hit sequence (- Caterina Michelagnoli).
3. Sorted data are analysed for the effects of polarization (- Firenze).

The PSA procedure

At the moment, only one hit per volume element is assumed. Only events with a single identified γ ray are used at later steps of the procedure.

The following information is recorded (in list mode): For each γ :

Number of hits, total energy.
For every hit:
Counter Nr, element Nr; Released energy; Space coordinates (on a 2 mm lattice).

An option for reconstruction of data to be attributed to a not-working channel is also provided.

Data sorting with mgt code

- As the 2 mm lattice of hit positions produced by PSA would result in unphysical spikes in the angular distributions, hit coordinates are randomly spread over a cube of 2 mm a side around the original value.
- The most probable time sequence of hits is reconstructed via a χ^{2}-like procedure.
- A first selection of events (e.g. discarding those with one single hit) can be performed at this phase.

A (relatively small) fraction of errors is expected. Their origin will be discussed later.

Data analysis

For each event we determine:

- The γ emission angle Θ_{γ} and polarization $\boldsymbol{P}\left(\Theta_{\gamma}\right)$
- The flight path r_{12}
- The polar scattering angle, as derived \# from the coordinates of the 1st and 2nd hit

$$
\cos \theta_{G}=\vec{r}_{12} \cdot \vec{r}_{1} /\left(r_{12} r_{1}\right)
$$

\# from the energy E_{1} released at the first hit

$$
\cos \theta_{E}=1+\frac{m_{e} c^{2}}{E_{\gamma}}-\frac{m_{e} c^{2}}{E_{\gamma}-E_{1}}
$$

- The azimuthal angle φ

Events have been classified according to the counter containing the first hit.

Further analysis for polarization

- Construction of the azimuthal angular distribution $f(\varphi ;$ CoulEx $)$ for the first Compton scattering of CoulEx γ rays (separately for each counter).
- Construction of the corresponding reference distribution $f(\varphi ;$ ref $)$ from ${ }^{137} \mathrm{Cs}$ data.
- Evaluation of the distribution of ratios $R(\varphi)=f(\varphi$; CoulEx $) / f(\varphi ;$ ref $)$.
- Fit of $R(\varphi)$ with $\mathrm{N}(1+A \cos 2 \phi)$ to obtain the asymmetry coefficient A.
- The ratio of A to the average polarization \bar{P} gives the Analysing power.

Refinement of the analysis and instrumental effects

It would be easy to derive from the scattering angle θ of each event the theoretical analysing power and compare its average value with experimental results. The direct comparison would be disappointing, due to several instrumental effects which (although irrelevant for normal spectroscopy measurements) significantly reduce the measured asymmetry. Namely

- Uncertainties in the hit position
- Tracking errors
- Unresolved hits

We will briefly discuss their effects.

Effects of Errors on the coordinates

We assume $\quad \Delta_{x}^{2}=\Delta_{y}^{2}=\Delta_{z}^{2} \approx b / E_{e}$
If the tracking of the event is correct one can deduce (at the first order) the statistical uncertainties on the scattering angles:

$$
\begin{gathered}
\Delta_{\varphi}^{2}=\frac{\Delta_{x}^{2}\left(E_{1}\right)+\Delta_{x}^{2}\left(E_{2}\right)}{\left(r_{12} \sin \theta\right)^{2}} \\
\Delta_{\cos \theta_{G}}^{2}=\frac{\left[\Delta_{x}^{2}\left(E_{1}\right)+\Delta_{x}^{2}\left(E_{2}\right)\right] \sin ^{2} \theta}{r_{12}^{2}}
\end{gathered}
$$

The error on φ determines a decrease of the coefficient of $\cos 2 \phi$. For a Gaussian distribution of the errors with variance $\Delta^{2} \pi$, the reduction coefficient is (again, at the first order)

$$
F_{\Delta}=e^{-2 \Delta_{\varphi}^{2}}
$$

BUT: Is the first order sufficient? and how to determine the value of b ?

Experimental investigations of errors on hit position

(from S. Akkoyun et al., NIM A 668 (2012) 26; P.A. Söderströ al., NIM A 638 (2011) 96.)

A first approximation has been obtained by a fit of these results...

... but a fine tuning is obtained by comparing the estimate of $\Delta^{2}\left(\cos \theta_{G}\right)$ determined by the error Δ_{x} with the variance of the experimental distribution of $\delta \cos \theta=\cos \theta_{G}-\cos \theta_{E}$ (the error on $\cos \theta_{E}$ is negligible).

Tracking errors

Tracking errors can result as a consequence of the finite precision in the determination of hit positions. Most of them (but not all!) will be discarded by the strict selection criteria. E.g., for $E_{\gamma}>m_{e} c^{2}$, the tracking of events consisting of only 2 hits is affected by an unresolvable ambiguity for a couple of angles θ_{1} and $\theta_{2} \approx \pi-\theta_{1}$ such that $E_{\gamma}^{\prime}\left(E_{\gamma}, \theta_{1}\right)=E_{\gamma}-E_{\gamma}^{\prime}\left(E_{\gamma}, \theta_{2}\right)$. In the distribution of $\cos \theta$ for ${ }^{137} \mathrm{Cs}$ and ${ }^{104} \mathrm{Pd}$, a deep minimum at backward angles is apparent. Missing events in this region have been wrongly attributed to the corresponding forward angle.

Unresolved hits

In the current PSA procedure, only one hit per volume element is assumed.
If the 'first-interaction point' consists of two unresolved hits:

- The energy release and the scattering angle do not follow the Compton kinematics.
- The azimuthal angle φ keeps (almost) no memory of the initial polarization.

For a realistic evaluation of all these instrumental effects, a MonteCarlo simulation is necessary. This will be the subject of the second part of the lecture.

Selection criteria

- Total energy released in one triple cluster.
- Flight path of the scattered photon: $r_{12}>15 \mathrm{~mm}$
- Cuts on the scattering angle:
- We require:

$$
\begin{array}{r}
\left|\cos \theta_{G}\right|<0.35 \\
\left|\cos \theta_{E}\right|<0.35 \\
\left|\cos \theta_{G}-\cos \theta_{E}\right| \\
<0.1
\end{array}
$$

Correlation plot of $\cos \theta_{E}$ vs. $\cos \theta_{G}$
Solid lines: $\cos \theta= \pm 0,35$

Selection on the scattering angle θ

Selection criteria:

$$
\begin{aligned}
& \left|\cos \theta_{G}\right|<0.35 \quad\left|\cos \theta_{E}\right|<0.35 \\
& \left|\cos \theta_{G}-\cos \theta_{E}\right|<0.1
\end{aligned}
$$

Distribution of the difference $\cos \theta_{G}-\cos \theta_{E}$
Black line: no cut on $\cos \theta_{E}$ Red line: $\left|\cos \theta_{E}\right|<0.35$
(Counter C5)

Selection on total energy release

Selection thresholds: $\left|E_{\text {tot }}-E_{\gamma}\right|<\Delta E \approx 4 \mathrm{keV}$

Fraction of underlying background in the full-energy gate:

${ }^{108} \mathrm{Pd}:$	$\approx 3 \%$
${ }^{104} \mathrm{Pd}:$	$\approx 3 \%$
${ }^{137} \mathrm{Cs}:$	$\approx 1 \%$

In case of a large underlying background it can be necessary to subtract, from the distributions corresponding to the full energy peak, those corresponding to an equivalent region of background.

Distributions of free path r_{12} for ${ }^{108} \mathrm{Pd}$ and ${ }^{137} \mathrm{Cs}$

Selection threshold: $r_{12}>15 \mathrm{~mm}$.

The distributions of distances r_{12} for ${ }^{137} \mathrm{Cs}$ and ${ }^{108} \mathrm{Pd}$ are different due to the different energy of scattered photons at equal angle θ.

Moreover, also the angular distributions in θ are different.

Correction of the reference data

To remedy (at least partially) for these differences, corrections to reference angular distributions in φ (different for ${ }^{104} \mathrm{Pd}$ and ${ }^{108} \mathrm{Pd}$) must be introduced. Namely, to each ${ }^{137} \mathrm{Cs}$ event is attributed a weight $w(\theta)=\frac{\mu\left(E_{P d}^{\prime}\right)}{} \begin{array}{lll} & \exp \left[-\mu\left(E_{P_{d}}^{\prime}\right) r_{12}\right] & \mathrm{d} \sigma\left(E_{P_{d}}, \theta\right) / \mathrm{d} \Omega \\ \mu\left(E_{C_{s}}^{\prime}\right) & \exp \left[-\mu\left(E_{C_{s}}^{\prime}\right) r_{12}\right] & \mathrm{d} \sigma\left(E_{C_{s}}, \theta\right) / \mathrm{d} \Omega\end{array}$
For each bin φ_{k} in the reference φ distribution, the resulting value and standard deviation are

$$
N\left(\varphi_{k}\right) \pm \delta N\left(\varphi_{k}\right)=\sum_{i \in \varphi_{k}} w\left(\theta_{i}\right) \pm \sqrt{\sum_{i \in \varphi_{k}} w^{2}\left(\theta_{i}\right)}
$$

Distributions of free path r_{12} after correction

Consistency of results for ${ }^{108} \mathbf{P d}$ and ${ }^{137} \mathrm{Cs}$

The effects of polarization cancel (almost exactly) in the difference
$N(\varphi)-N(\varphi+\pi)$
If the analysis is correct, the differences deduced from angular distributions of ${ }^{108} \mathrm{Pd}$ and ${ }^{137} \mathrm{C}$ (normalised to equal area) should overlap exactly.

Normalised ratios

Azimuthal distributions
$N_{C E}(\varphi)$ (for CoulEx) and
$N_{\text {ref }}(\varphi)$ (from Cs source) evaluated for the crystal containing the first interaction (in this example, C4).

Normalized ratios $R(\varphi)$ are deduced from the symmetrized distributions

$$
N^{s}(\varphi)=[N(\varphi)+N(\varphi+\pi)] / 2:
$$

$$
R(\varphi)=\frac{N_{C E}^{s}(\varphi) / \bar{N}_{C E}^{s}}{N_{\text {ref }}^{s}(\varphi) / \bar{N}_{r e f}^{s}}
$$

Asymmetries (C4)

Apart from second order corrections*, Normalised ratios can be fitted with $R(\varphi)=1+A \cos 2 \varphi$

We define the Analysing Power $\mathcal{A} \equiv Q / 2$ from the relation $A=\mathcal{A} \overline{P(\Theta)}$

* More exactly $E(a / b) \approx[E(a) / E(b)) /\left\{1+\left[D^{2}(b) / E^{2}(b)\right]\right\}$

Estimated Analysing Power

Layout

Theoretical preliminaries
Measurements with AGATA
AGATA as a segmented detector
Agata as a tracking detector
MonteCarlo simulations
Introducing Polarization in MC results
comparison with CoulEx results
Perspectives for future improvements

AGATA simulation in GEANT4

Realistic simulations of AGATA counters, triple clusters and various combinations of them have been developed in the frame of GEANT4.

I want to acknowledge here, once more, the fundamental contribution given by
Enrico Farnea.

MonteCarlo and Polarization

Early attempt to account for Polarization in the first Compton scattering:
≈ 1990 polarization in GEANT 3 (Firenze).
The current version of AGATA MC includes the option for taking into account the polarization of primary γ rays.
However we have preferred to simulate events with
a non polarized γ and introduce corrections for polarization later (as we did to derive reference distributions from ${ }^{137} \mathrm{Cs}$ data, correcting for different mean free path.)

How to introduce polarization in MonteCarlo results simulated without polarization

Suppose a simulated event k contains n hits at positions \vec{X}_{i} corresponding to a sequence of $n-1$ Compton scatterings at angles $\theta_{i}(k), \varphi_{i}(k)$. For a primary γ with linear polarization P, the probability of this event would be $W_{P}(k)$, while it is $W_{0}(k)$ for $P=0$ as assumed by the MonteCarlo. By definition, the MonteCarlo procedure attributes equal weight to all the simulated events. Instead, a weight $w(k)=W_{P}(k) / W_{0}(k)$ will be attributed to each event k, in order to deduce simulated results for polarization P.

How to introduce polarization in MonteCarlo results simulated without polarization (2)

As a consequence, in every bin B_{j} of a simulated distribution, the simulated content will be

$$
N_{j}=\sum_{k \in B_{j}} w(k) \pm \sqrt{\sum_{k \in B_{j}} w^{2}(k)}
$$

This is a hybrid procedure, half-way between pure MonteCarlo and integration of the probability density over the available space of parameters. But, as we know, MonteCarlo itself can be considered as a form of numerical integration.

Block Diagram of the procedure

Analysis

Three azimuthal distributions $N(\varphi)$ are obtained:
$N_{0}(\varphi)$ for $P \equiv 0$ (no polarization)
$N_{1}(\varphi)$ for $P \equiv 1$ (full polarization)
$N_{P}(\varphi)$ for P as predicted for CoulEx.
Data are analysed separately according to the crystal containing the first interaction.
Ratios $R(\varphi)$ shows the expected dependence on φ :
$R_{1}(\varphi)=N_{1}(\varphi) / N_{0}(\varphi) \propto 1+\mathcal{A} \cos 2 \varphi$
$R_{P}(\varphi)=N_{P}(\varphi) / N_{0}(\varphi) \propto 1+\mathrm{A} \cos 2 \varphi$ where \mathcal{A} is the Analysing power and A the asymmetry (different for each counter) to be compared with the experimental value.

BUT

is our complicated procedure really necessary?

One could use the results of 'Sorting with errors' and adjust the error parameters to reproduce ${ }^{104} \mathrm{Pd}$. Yes, but ${ }^{108} \mathrm{Pd}$ will not be reproduced. In particular, for any choice of parameters, the predicted analysing power will be larger for ${ }^{108} \mathrm{Pd}$ than for ${ }^{104} \mathrm{Pd}$, at variance with results of our procedure and experimental results.

This work is still in progress, and all data must be considered as preliminary results.

A word of caution

In the present analysis, effects of the polarization of the primary γ are considered only in the first Compton scattering.
Consequences on the further scatterings are ignored. This is strictly valid for one Compton scattering, followed by total absorption of the scattered photon. In fact, polarization of photons emerging from each Compton scattering will influence the azimuthal distribution of the next one and therefore the escape probability.
In principle, an exact calculation of W for more hits is possible. We will come again to this point later.

Comparison of Experimental Results for ${ }^{137} \mathrm{Cs}$ with MC Simulations

C5

Comparison of Experimental Results for ${ }^{104} \mathbf{P d}$

 with MC Simulations (with polarization) and without polarizationC4

C5

Comparison of Experimental Results for ${ }^{108}$ Pd

 with MC Simulations (with polarization) and without polarizationC4

C5

Experimental Results and MC Simulations

Distributions of $D \cos =\cos \theta_{E}-\cos \theta_{G}$
Selection criteria:
$r_{12}>15 \mathrm{~mm}$;
$E_{\text {tot }}=E_{\gamma} \pm 4 \mathrm{keV}$;
$\left|\cos _{e n}\right|<0.35$
$\left|\cos _{g e}\right|<0.35$.

Experimental Results and MC Simulations for Asymmetry ratios

Same selection criteria plus \mid Dcos $\mid<0.1$
Experimental results: $R(\varphi) \Rightarrow \mathrm{Pd} / \mathrm{Cs}$
Simulated results:
simulation with expect P
divided by simulation with $P=0$
Two possible Methods:
simulations with and without P
\#1 from the same set of MC data
\#2 from independent sets

Comparison of Experimental Results with Simulation Method \#1 (counter C4)

Comparison of Experimental Ratios
 with Simulation Method \#1 (counter C5)

Comparison of Experimental Results

 with Simulation Method \#2 (counter C4)

Comparison of Experimental Results

 with Simulation Method \#2 (counter C5)

Comparison of MC Results for Ratios (counter C4)

with Method \#1 and Method \#2

Which one is preferable?
It depends on the particular purpose:

- Method \#1:

More accurate,almost no fluctuations Best used for Conclusions

- Method \#2:

Realistic prediction of statistical errors
Best used for Proposals

Estimated Analysing Power (horizontal lines)

Layout

Theoretical preliminaries:
Measurements with AGATA
AGATA as a segmented detector
Agata as a tracking detector
The LNL CoulEx experiment
MonteCarlo simulations
Perspectives for future improvements

Possible improvements

Although present results show already a reasonable agreement between the analysis of experimental results and MonteCarlo simulation, we think some further improvement is possible on both.

- In the data analysis, e.g. in deriving from ${ }^{137} \mathrm{Cs}$ data the 'reference distributions' at the rather different energy of ${ }^{108} \mathrm{Pd}$.
- In the MonteCarlo simulation, evaluating correctly the combined probability for the entire sequence of Compton scatterings.

Some comments on the MonteCarlo simulation

 for a sequence of Compton scatteringsUsually, MonteCarlo likes to work with a sequence of independent events, associated to given probabilities (cross sections). This is not possible in our case, as it is necessary to save memory of the polarization of intermediate photons (as it is correctly performed in GEANT4).
To this purpose, it is not sufficient to know the probabilities (cross section) for every step: we need the transition amplitudes. We shall see how they can be evaluated,

Pure polarization states

Pure polarization eigenstate:
for the photon: $\mid \mu>$; for the electron: $\nu= \pm 1 / 2>$ Compton scattering amplitude from a pure state $\mid \mu \nu>$ to a pure state $\mid \mu^{\prime} \nu^{\prime}>: f\left(E, \theta, \varphi ; \mu \nu, \mu^{\prime} \nu^{\prime}\right)$ The amplitude for a process of two consecutive Compton scatterings, at angles θ_{1}, φ_{1} and θ_{2}, φ_{2}, is the product of the two amplitudes, summed over the polarization states of the intermediate photon.
Cross section from a pure state $\left|\mu_{1} \nu_{1} \nu_{2}\right\rangle$ to a pure state $\left|\mu_{2}^{\prime} \nu_{1}^{\prime} \nu_{2}^{\prime}\right\rangle$
$\mathrm{d} \sigma \propto\left|\sum_{\mu_{1}^{\prime} \mu_{2}} \delta_{\mu_{1}^{\prime}, \mu_{2}} f\left(E_{1}, \theta_{1}, \varphi_{1} ; \mu_{1} \nu_{1}, \mu_{1}^{\prime} \nu_{1}^{\prime}\right) f\left(E_{2} \cdot \theta_{2}, \varphi_{2} ; \mu_{2} \nu_{2} \mu_{2}^{\prime} \nu_{2}^{\prime}\right)\right|^{2}$

Mixed state !

We do not know the polarization of the two electrons.
\Rightarrow Sum over the final electron polarizations and average over the initial ones.
If also the final polarization of the photon is not measured, the average cross section for the entire process takes the form

$$
\begin{array}{r}
\mathrm{d} \bar{\sigma} \propto \frac{1}{4} \sum_{\nu_{1} \nu_{1}^{\prime} \nu_{2} \nu_{2}^{\prime}} \sum_{\mu_{2}^{\prime}} \sum_{\mu_{1}^{\prime}, \mu_{1}^{\prime \prime}} f^{*}\left(E_{1}, \theta_{1}, \varphi_{1}, \mu_{1} \nu_{1} \mu_{1}^{\prime} \nu_{1}^{\prime}\right) f^{*}\left(E_{2}, \theta_{2}, \varphi_{2}, \mu_{1}^{\prime} \nu_{2} \mu_{2}^{\prime} \nu_{2}^{\prime}\right) \\
f\left(E_{1}, \theta_{1}, \varphi_{1}, \mu_{1} \nu_{1} \mu_{1}^{\prime \prime} \nu_{1}^{\prime}\right) f\left(E_{2}, \theta_{2}, \varphi_{2}, \mu_{1}^{\prime \prime} \nu_{2} \mu_{2}^{\prime} \nu_{2}^{\prime}\right)
\end{array}
$$

This expression cannot be factorised. Polarization of the intermediate photon must be taken into account.

Polarization transfer

The 2×2 density matrices ρ_{0}, ρ_{1} and ρ_{2} describe the polarization of the initial, intermediate and final photon.
We define the polarization-transfer matrix
$T\left(\theta, \varphi ; \mu_{0}, \mu_{1}, \mu_{0}^{\prime}, \mu_{1}^{\prime}\right)=\frac{1}{2} \sum_{\nu_{1} \nu_{1}^{\prime}} f^{*}\left(\theta, \varphi, \mu_{0} \nu_{1} \mu_{0}^{\prime} \nu_{1}^{\prime}\right) f\left(\theta, \varphi, \mu_{1} \nu_{1} \mu_{1}^{\prime} \nu_{1}^{\prime}\right)$
Then

$$
\begin{aligned}
\rho_{1} & =T\left(E_{1}, \theta_{1}, \varphi_{1}\right) \rho_{0} \tilde{T}\left(E_{2}, \theta_{1}, \varphi_{1}\right) \\
\rho_{2} & =T\left(E_{2}, \theta_{2}, \varphi_{2}\right) \rho_{1} \tilde{T}\left(E_{2}, \theta_{2}, \varphi_{2}\right) \\
& =T\left(E_{2}, \theta_{2}, \varphi_{2}\right) T\left(E_{1} \cdot \theta_{1}, \varphi_{1}\right) \rho_{0} \tilde{T}\left(E_{1} \theta_{1}, \varphi_{1}\right) \tilde{T}\left(E_{2}, \theta_{2}, \varphi_{2}\right)
\end{aligned}
$$

Average cross section (associated to the expectation value of the operator \mathcal{O}_{2} in the polarization space).

$$
\mathrm{d} \bar{\sigma} \propto \operatorname{Tr}\left(\rho_{2} \mathcal{O}_{2}\right)
$$

If the polarization of the final state is not observed, the operator \mathcal{O}_{2} is the unit operator and $\mathrm{d} \bar{\sigma} \propto \operatorname{Tr} \rho_{2}$.

The Compton cascade

Until now, we have considered the case of two Compton scatterings, but the procedure can be easily extended to an arbitrary number of interactions in the Compton scattering chain.

This treatment of polarization can be inserted in the MonteCarlo procedure by taking memory of the polarization parameters (Stokes parameter) at each step of the Compton cascade,

Thanks for your attention

Practical Session

INDEX
1-2 \# Data files (sorted data)
from Legnaro experiment
3-4 \# Algorithms for deriving the Compton scattering angles
5 \# Suggested exercises.
6-7 \# Polarization of gammas from aligned states
(fusion-evaporation reactions)

1.- Data files:

dati-104pd.root exp. ${ }^{104} \mathrm{Pd}$
dati-137cs.root exp. ${ }^{137} \mathrm{Cs}$
mc-104pd-1.root MC ${ }^{104} \mathrm{Pd}$, part1
mc-104pd-2.root MC ${ }^{104} \mathrm{Pd}$, part2
sector-c.txt center of volume elements of the
6 counters in general coordinates.
Meaning of 'weight' (W)
dat-104pd.txt $\quad W \equiv 1$
dat-137cs.txt $\quad W$ to construct reference for ${ }^{104} \mathrm{Pd}$ mc-104pd-*.txt W to construct distributions for polarized γ from Coulex or put $W=1$ for no polarization

2.- Record structure of data files:

cosen, cosge, diffcos, phi,
en1, en2, etotd, r12, costetagamma, nc1, nsec1, nc2, nsec2, ind3, nhits, weight
diff-cos $=$ cos-en - cos-ge
ind3 $=1$: energy entirely released in 1 crystal
$=2$: in 1 triple cluster
$=3$: in more clusters

3.- Algorithms for the Compton scattering angles

Here, the primary reference frame is defined as having the z axis pointing to a symmetry axis of AGATA demonstrator and the x axis perpendicular to it and to the beam direction. We define:
Beam direction: $\hat{b}=\hat{e}_{y} \cos \alpha+\hat{e}_{z} \sin \alpha$
Coordinates of the γ source: $x_{s}=y_{s}=z_{s}=0$
Coordinates of the first Compton interaction:
$\vec{r}_{1}=x_{1} \hat{e}_{x}+y_{1} \hat{e}_{y}+z_{1} \hat{e}_{z}$
Coordinates of the second interaction: $\vec{r}_{2}=x_{2} \hat{e}_{x}+y_{2} \hat{e}_{y}+z_{2} \hat{e}_{z}$ Normal to the scattering plane: \hat{n}_{1}
Angle of γ emission with respect to the beam axis: Θ_{γ}
We can uase the relations:

$$
\begin{aligned}
& r_{1} \cos \Theta_{\gamma}=\hat{b} \cdot \vec{r}_{1}=y_{1} \cos \alpha+z_{1} \sin \alpha \\
& r_{1} \sin \Theta_{\gamma} \hat{n}_{1}=\hat{b} \times \vec{r}_{1}=\left(z_{1} \cos \alpha-y_{1} \sin \alpha\right) \hat{e}_{x}+x_{1} \sin \alpha \hat{e}_{y}-x_{1} \cos \alpha \hat{e}_{z} \\
& r_{1} \sin \Theta_{\gamma} \cos \phi_{1}=\hat{b} \times \vec{r}_{1} \cdot \hat{e}_{x}=z_{1} \cos \alpha-y_{1} \sin \alpha \\
& \hat{e}_{x} \times\left(\hat{b} \times \vec{r}_{1}\right)=x_{1} \cos \alpha \hat{e}_{y}+x_{1} \sin \alpha \hat{e}_{z}=x_{1} \hat{b} \\
& r_{1} \sin \Theta_{\gamma} \sin \phi_{\gamma}=\left[\left(\hat{b} \times \vec{r}_{1}\right) \times \hat{e} x\right] \cdot \hat{b}=-x_{1}
\end{aligned}
$$

4.- Compton scattering

For the first Compton scattering:
Direction of the scattered γ : $\hat{r}_{12}=\vec{r}_{12} /\left|r_{12}\right|$, with $\vec{r}_{12}=\vec{r}_{2}-\vec{r}_{1}$
Polar angle θ between \vec{r}_{12} and \vec{r}_{1}.
Azimuthal angle φ between the planes $\vec{r}_{12}, \vec{r}_{1}$ and \vec{b}, \vec{r}_{1} (or between the normals to these planes, \hat{n}_{12} and \hat{n}_{1}, both perpendicular to \vec{r}_{1}).
We obtain them from the relations

$$
\begin{aligned}
& r_{1} r_{12} \cos \theta=\vec{r}_{12} \cdot \vec{r}_{1}=x_{1} x_{12}+y_{1} y_{12}+z_{1} z_{12} \\
& r_{1} r_{12} \sin \theta=\left|\vec{r}_{1} \times \vec{r}_{12}\right| \\
& \vec{r}_{1} \times \vec{r}_{12}=\left(y_{1} z_{12}-z_{1} y_{12}\right) \hat{e}_{x}+\left(z_{1} x_{12}-x_{1} z_{12}\right) \hat{e}_{y}+\left(x_{1} y_{12}-y_{1} x_{12}\right) \hat{e}_{z} \\
& \cos \varphi=\hat{n}_{1} \cdot \hat{n}_{12} \\
& \sin \varphi=\left|\hat{n}_{1} \times \hat{n}_{12} \cdot \vec{r}_{12}\right| / r_{12}
\end{aligned}
$$

5.-Suggested exercises

Ratio of the azimuthal distributions

1.- Read the first data file in ROOT ntuple format
2.- Select events with proper cuts (variation around suggested values are welcome).

$$
\begin{aligned}
& \text { Suggeste values: } \quad \text { r12 }>15 \\
& \begin{array}{l}
\mid \cos -\text { en }|<0.35 ; ~ \cos -\mathrm{ge}|<0.35 \\
\quad \mid \text { diff-cos } \mid<0.1
\end{array} \\
& \mid \text { Etotd }- \text { Etrue } \mid<4 \\
& \quad \text { with } .8 ; \text { Etrue }\left({ }^{137} \mathrm{Cs}\right)=661 \\
& \text { ind } 3=2 \text { (values } 1 \text { and } 3 \text { could be tried!) } \\
& \text { nhits: no limits (a limit to nhits }=2 \text { could be interesting) }
\end{aligned}
$$

3.- Construct the histograms of φ with proper cuts and weights.

Suggested step 1° other values welcome.
4.- Optionally: Symmetrize: $N^{s}(\varphi)=N(\varphi)+N(\varphi+180)$
5.- Repeat points 1 to 4 for the second file. 6.- Construct the ratio of the relevant spectra (from 0° to 180°)
e.g. Pd / Cs(weighted) or $\mathrm{MC}($ weighted $) / \mathrm{MC}(\mathrm{W}=1)$
7.- Fit with the function $A+B \cos 2 \varphi$

6.- Polarization of gammas from aligned states

From Ferguson* Eq. 3.66:
where

$$
P\left(\Theta_{\gamma}\right)=\frac{A_{+}}{A_{-}}
$$

$$
\begin{aligned}
A_{ \pm}= & \sum_{k L L^{\prime}} \rho_{k 0}(a a)(-)^{b-a} \bar{Z}_{1}\left(L a L^{\prime} a, b k\right) \delta^{r} \\
& {\left[P_{k}\left(\cos \Theta_{\gamma}\right) \pm(-)^{\pi^{\prime}} K_{k}\left(L L^{\prime}\right) P_{k}^{2}\left(\cos \Theta_{\gamma}\right)\right] } \\
K_{k}\left(L L^{\prime}\right)= & -\sqrt{\frac{(k-2)!}{(k+2)!}} \frac{\left(L 1, L^{\prime} 1 \mid k 2\right)}{\left(L 1, L^{\prime}-1 \mid k 0\right)}
\end{aligned}
$$

Where $a(b)$ is the spin of the parent (daughter) state, L the multipole order of the transition, and the exponent r of the multipole mixing coefficient δ is 0,1 or 2 according to the number of indexes L corresponding to the higher multipole.

[^0]
7.- The coefficients

$\bar{Z}_{1}\left(L b L^{\prime} b^{\prime} ; c k\right)=(-)^{k-L+L^{\prime}-1} \hat{L} \hat{L}^{\prime} \hat{b} \hat{b}^{\prime}\left(L 1, L^{\prime}-1 \mid k 0\right) W\left(L b L^{\prime} b^{\prime} ; c k\right)$ where $W\left(L b L^{\prime} b^{\prime} ; c k\right)=(-)^{L+L^{\prime}+b+b^{\prime}} W_{6 J}\left(L b c ; b^{\prime} L^{\prime} k\right)$ is a Racah coefficient, and $\hat{L} \equiv \sqrt{2 L+1}$. The coefficients \bar{Z}_{1} are tabulated by Ferguson. $P_{k}\left(\cos \Theta_{\gamma}\right)$ is a Legendre polynomial, $P_{k}^{2}\left(\cos \Theta_{\gamma}\right)$ is an associated Legendre polynomial.
The statistical tensors are expressed as a function of the density matrix as

$$
\rho_{k \kappa}(a, a)=\sum_{\alpha \alpha^{\prime}}(-)^{a-\alpha^{\prime}}\left(a \alpha, a-\alpha^{\prime} \mid k \kappa\right)\langle a \alpha| \rho\left|a \alpha^{\prime}\right\rangle
$$

For an aligned (axially symmetric) system $\kappa \equiv 0$ and

$$
\rho_{k 0}(a, a)=\sum_{\alpha}(-)^{a-\alpha}(a \alpha, a-\alpha \mid k 0)\langle a \alpha| \rho|a \alpha\rangle
$$

Maximum alignment: $\langle a 0| \rho|a 0\rangle=1$ for a even, $\langle a \pm 1 / 2| \rho|a \pm 1 / 2\rangle=1 / 2$ for a odd.

[^0]: .* D.J. Ferguson, Angular correlation methods in gamma-ray spectroscopy (Amsterdam 1965). Eq. 3.66 contains an obvious printing error, see eq. 3.63 .

