

Precision gravity measurements with cold atom interferometry

Guglielmo M. Tino

Dipartimento di Fisica & Astronomia e LENS – Università di Firenze Istituto Nazionale di Fisica Nucleare, Sezione di Firenze

http://coldatoms.lens.unifi.it/

Colloquium - Dipartimento di Fisica dell'Università di Pisa, 4 November 2014

Outline

- Precision measurement of the gravitational constant G with a Rb Raman interferometer
- Gravity measurement at µm scale with ultracold Sr atoms in an optical lattice
- Test of the equivalence principle for 0-spin and half-integer-spin Sr atoms: Search for spin-gravity coupling effects
- Prospects

Atom Interferometry

Interference fringes – Firenze 2006

EXAMPLE 1 Internet Internet

Laser cooling: Atomic temperatures

Atomic Temperature : $k_B T = M v_{rms}^2$

Minimum temperature for Doppler cooling: $k_B T_D = \frac{h\Gamma}{2}$

Single photon recoil temperature:

$$k_B T_r = \frac{1}{M} \left(\frac{h_{\mathbf{V} L}}{c} \right)^2$$

Examples:		
	T _D	T _r
Na	240 μΚ	2.4 μΚ
Rb	120 μΚ	360 nK
Cs	120 μΚ	200 nK
Sr (intercombination)	180 nK	460 nK

Magneto-Optical Trap (MOT)

 $\begin{array}{ll} \text{density n} &\approx 10^{11} \text{ cm}^{-3} \\ \text{temperature T} &\approx 100 \ \mu\text{K} \\ \text{size } \Delta x &\approx 1 \ \text{mm} \end{array}$

E. Raab et al., Phys. Rev. Lett. 59, 2631 (1987)

Light shifts and optical traps

First exp. demonstration: S. Chu et al., 1986

DEGLI STUDI FIRENZE

What is Bose-Einstein condensation (BEC)?

- High Temperature T: thermal velocity v density d⁻³ "Billiard balls"
- Low Temperature T: De Broglie wavelength λ_{dB} =h/mv \propto T^{-1/2} "Wave packets"
 - T=T_{crit}: Bose-Einstein Condensation λ_{dB} ≈ d "Matter wave overlap"

T=0: Pure Bose condensate

"Giant matter wave" from W. Ketterle

Bose-Einstein condensation

The atoms with an <u>even</u> number of electrons + protons + neutrons at very low temperatures occupy all the ground state of the system. This new state of matter is called *Bose-Einstein condensate*.

The atoms are called *bosons*.

A. Einstein and S.N. Bose (1925)

Bose-Einstein condensation in dilute gases of atoms

Eric A. Cornell Carl E. JILA and National Wieman Institute of JILA and Standards and University of Technology Colorado, (NIST), Boulder, Boulder, Colorado, USA.

Wolfgang Ketterle Massachusetts Institute of Technology (MIT), Cambridge, Colorado, USA. Massachusetts, USA.

lenses

interferometers

atom laser

Atom interferometer force sensors

The quantum mechanical wave-like properties of atoms can be used to sense inertial forces.

$$\lambda_{DB} = \frac{h}{Mv}$$

Gravity/Accelerations

As atom climbs gravitational potential, velocity decreases and wavelength increases

Rotations

Rotations induce path length differences by shifting the positions of beam splitting optics

Matter wave sensors

 $\Delta \Phi_{\rm rot} = 2\pi \frac{2 \, m_{\rm at}}{h} \, A \times \Omega$ $\frac{\Delta \phi_{mat}}{\Delta \phi_{ph}} \sim \frac{m_{at} \not \lambda \not x}{h} \approx 5 \not x 0^{10}$

Stanford atom gravimeter

A. Peters, K.Y. Chung and S. Chu, Nature <u>400</u>, 849 (1999)

Stanford/Yale gravity gradiometer

platform motion with differential acceleration measurements.

from M.A. Kasevich

M.J. Snadden et al., Phys. Rev. Lett. <u>81</u>, 971 (1998)

EUROPEAN COMMISSION

Information Society and Media Directorate-General

Emerging Technologies and Infrastructures Future and Emerging Technologies (FET) - Open

iSense – Integrated Quantum Sensors

7th Framework Programme - Theme 3 "Information and Communication Technologies" Call identifier: FP7-ICT-2009- C FET-Open

	Scheme	State-of-the Art	iSense Technology Platform	Goals integrated Sensor	Participant no. *	Participant organisation name	Part. short name	Country
		100000 (2011)	SMD		1 (Coordinator)	The University of Birmingham	Bham	UK
1 1	A Contral		Citil C	Demonstrator:	2	QinetiQ	QinetiQ	UK
1 /	Svetem	Marca - State		Gravity Sensor	3	University of Hamburg	UHH	D
1	V	Constant of the state of the second state of t	and the second s	Gravity Sensor	4	Centre National de la Recherche	CNRS	F
- -	·	1m ³ , 100kg. 500W	0.05m ³ , 10kg, 40W			Scientifique ¹		
11		THE NEW	integrated Optics		5	University of Florence	UNIFI	
	Laser		-		6	Leibniz University Hannover	LUH	D
	System				7	Institute for quantum optics and	IQOQI-	A
		2m3, 200kg, 100W	0.001m3, 2kg, 5W			quantum information - Austrian	OEAW	
1- k	·····		Atom Chin			Academy of Sciences		
		The Avenue	Atomicinip		8	Ferdinand-Braun-Institut für	FBH	D
	Atomic			0.1m ³ , 20kg, 50W		Höchstfrequenztechnik im		
	Probe			Sensitivity: 1µgal/Hz ^{1/2}		Forschungsverbung Berlin e.V.		
		0.1m3, 50kg, 1kW	0.01m ³ , 5kg, 1W	virtually drift-free	9	University of Nottingham	Nham	UK

IOP PUBLISHING

Meas. Sci. Technol. 20 (2009) 022001 (16pp)

MEASUREMENT SCIENCE AND TECHNOLOGY

doi:10.1088/0957-0233/20/2/022001

TOPICAL REVIEW

Precision gravimetry with atomic sensors

M de Angelis^{1,2}, A Bertoldi³, L Cacciapuoti⁴, A Giorgini^{2,5}, G Lamporesi⁶, M Prevedelli⁷, G Saccorotti⁸, F Sorrentino² and G M Tino²

Table 1. Summary of error sources level and technical budgets for most used commercial gravimeters.

	Spring [94]	Superconducting [68, 95]	Free falling [69, 72]
Noise $(\Delta g/g)/\sqrt{\text{Hz}}$	5×10^{-9}	1×10^{-12}	5×10^{-8}
Drift $(\Delta g/g)$	1.5×10^{-6} per month	1×10^{-9} per year	-
Accuracy $\Delta g/g$	_	-	4×10^{-9}
Measurement	Relative	Relative	Absolute
Size (m ³)	0.04	~1.5	1.5
Weight (kg)	14	321	127
Power (W)	24	400	350
Error sources	Temperature and random	No field operation.	Thermal drift.
	seasonal drift. Calibration varies	Magnetic and	Magnetic and
	in time and position	electrostatic effects	electrostatic effects

Figure 7. Scheme of gravity sensors based on atom interferometry: absolute measurement of g in a fountain configuration, a release configuration, a 6-axis configuration and a scheme of a gravity gradiometer. Their sensitivities and accuracy are given in table 2.

Table 2. Summary of present sensitivities and accuracy for atom sensor gravimeters and gravity gradiometer of figure 7.

	Fountain [2, 3]	Release [82]	6-Axis sensor [83]	Gradiometer [5, 11]
Sensitivity Accuracy	$1.1 \times 10^{-8} g / \sqrt{\text{Hz}}$ $3 \times 10^{-9} g$	$1.4 \times 10^{-8} g/\sqrt{\text{Hz}}$	$1.5 \times 10^{-6} g/\sqrt{\text{Hz}}$	$4 \times 10^{-9} (g/m)/\sqrt{\text{Hz}}$

Measurement of the gravitational constant G by atom interferometry

Measurements of the Newtonian gravitational constant G

Measurements of the Newtonian gravitational constant G

$G = 6.67384 (80) \times 10^{-11} \text{ m}^3 \text{ kg}^{-1}\text{s}^{-2}$ [1.2×10⁻⁴]

P.J. Mohr, B. N. Taylor, and D. B. Newell, *CODATA* recommended values of the fundamental physical constants: 2010, Rev. Mod. Phys., Vol. 84, No. 4, (2012)

Quinn 2001

• Measure g by atom interferometry

- Add source mass
- Measure change of g

> Precision measurement of G

$$F(r) = G \frac{M_1 M_2}{r^2}$$

• Measure g by atom interferometry

Add source masses

STUDI ENZE

• Measure change of g

Precision measurement of G
Test of Newtonian law

$$F(r) = G \frac{M_1 M_2}{r^2}$$

Why atoms?

- Extremely small size
- Well known and reproducible properties
- Quantum systems
- Precision gravity measurement by atom interferometry
- Potential immunity from stray fields effects
- Different states, isotopes,...

M. Kasevich, S. Chu, Appl. Phys. B <u>54</u>, 321 (1992)

A. Peters, K.Y. Chung and S. Chu, Nature <u>400</u>, 849 (1999)

Raman interferometry in an atomic fountain

Phase difference between the paths:

 $\Delta \Phi = \mathbf{k}_{e}[\mathbf{z}(0)-2\mathbf{z}(T)+\mathbf{z}(2T)]+\Phi_{e} \qquad \mathbf{k}_{e}=\mathbf{k}_{1}-\mathbf{k}_{2}, \ \omega_{e}=\mathbf{c} \ \mathbf{k}_{e}$

with $z(t) = -g t^2/2 + v_0 t + z_0 \& \Phi_e = 0 \implies \Delta \Phi = k_e g T^2$

 $\mathbf{g} = \Delta \Phi / \mathbf{k}_{\mathbf{e}} \mathbf{T}^2$

 $T = 150 \text{ ms} \Rightarrow 2\pi = 10^{-6} \text{g}$

S/N = 1000

M. Kasevich, S. Chu, Appl. Phys. B <u>54</u>, 321 (1992) A. Peters, K.Y. Chung and S. Chu, Nature <u>400</u>, 849 (1999)

UNIVERSITÀ DEGLI STUDI FIRENZE Atom gravimeter + source mass

MAGIA apparatus

Cavendish 1798: "The apparatus is very simple"

MAGIA apparatus is not very simple

- Laser system
 - 6 frequency stabilized ECDL sources @ 780 nm (Reference, Cooling 2D-MOT, Cooling 3D-MOT, Repumper master, Raman master, Raman slave)
 - 3 optically injected diode lasers @ 780 nm (Repumper 2D-MOT, Repumper 3D-MOT, Probe)
 - 4 Tapered Amplifiers @ 780 nm (Cooling 2D-MOT, Cooling 3D-MOT, Raman master, Raman
 - ~20 AOMs
 - ~20 PM optical fibres
- Active stabilization loops
 - Intensity of 3D-MOT Cooling up and down laser beams, master and slave Raman laser beams and Probe laser
 - tilt of Raman retro-reflection mirror
 - Earth rotation compensation with tilt-tip Raman mirror
- Vacuum system
 - 2D-MOT chamber, steel, 10⁻⁷ torr Rb pressure
 - main chambers and interferometer tube, titanium, ~10⁻¹⁰ torr
- Electronic control system
 - real-time system for analog I/O and TTL signals, <5 μs jitter
 - ~20 shutter drivers
 - ~10 DDS for AOM and OPLL driving
 - 6 low-noise coil drivers
- Laboratory environment
 - temperature stability 0.1 °C
 - humidity stability 5%

MAGIA apparatus

G. Lamporesi, A. Bertoldi, A. Cecchetti, B. Dulach, M. Fattori, A. Malengo, S. Pettorruso, M. Prevedelli, G.M. Tino, Source Masses and Positioning System for an Accurate Measurement of G, Rev. Scient. Instr. 78, 075109 (2007)

Laser and optical system

L. Cacciapuoti, M. de Angelis, M. Fattori, G. Lamporesi, T. Petelski, M. Prevedelli, J. Stuhler, G.M. Tino, *Analog+digital phase and frequency detector for phase locking of diode lasers*, Rev. Scient. Instr. 76, 053111 (2005)

Double launch and juggling

UNIVERSITÀ DEGLI STUDI FIRENZE

Guglielmo M. Tino, Colloquium, Dipartimento di Fisica - Pisa, 4/11/2014

Triple velocity selection

- Goal: reduce background of thermal atoms from off-resonant scattering during VS pulse
- Initial state after launch: F=2, unpolarized, 2.5 μ K (3.5 v_{rec})
- Raman + blow-away pulses
- Final state: F=1, m_F=0, $\Delta v_z = v_{rec}/3$

Raman interferometry

Detection

- In upper chamber, atoms interact with two horizontal laser beams resonant with the F=2—>F'=3 transition
- rectangular shape, 15 mm width 4 mm height
- intensity $\sim 3.5 I_S$
- retro-reflected in upper half (blow-away in lower half)
- Additional F=1—>F'=2 laser beam in the middle to repump atoms in F=2
- upper (lower) detector counts atom in F=2 (F=1)
- Fluorescence collected on two independent photodiodes
- solid angle ~0.01 sterad
- transimpedance 1 GOhm, conversion ~5 μ V/atom

G. T. Foster et al., Opt. Lett **27**, 951 (2002)

A. Bertoldi G.Lamporesi , L. Cacciapuoti, M. deAngelis, M.Fattori, T.Petelski, A. Peters, M. Prevedelli, J. Stuhler, G.M. Tino, *Atom interferometry gravity-gradiometer for the determination of the Newtonian gravitational constant G*, Eur. Phys. J. D 40, 271 (2006)

J. B. Fixler, G. T. Foster, J. M. McGuirk and M. A. Kasevich, Atom Interferometer Measurement of the Newtonian Constant of Gravity, Science 315, 74 (2007)

2007 Results from MAGIA G = 6.667 (11) (3) $m^3 kg^{-1} s^{-2}$

G. Lamporesi, A. Bertoldi, L. Cacciapuoti, M. Prevedelli, G. M. Tino Determination of the Newtonian Gravitational Constant Using Atom Interferometry Phys. Rev. Lett. 100, 050801 (2008)

Guglielmo M. Tino, Colloquium, Dipartimento di Fisica - Pisa, 4/11/2014

MAGIA: From proof-of-principle to the measurement of G

- Sensitivity
 - 15-fold improvement of the instrument sensitivity from 2008 to 2013
 - integration time for the target 100 ppm reduced by more than a factor 200
- Accuracy
 - systematic uncertainty reduced by a factor ~10 since 2008, mostly due to
 - better characterization of source masses
 - control & mitigation of Coriolis acceleration
 - excellent control of atomic trajectories
- Data analysis
 - we developed a reliable model accounting for all of the relevant effects
 - gravitational potential generated by source masses along atomic path
 - quantum mechanical phase shift of atomic probes
 - detection efficiency
 - measured data are compared with a Montecarlo simulation

Improving the sensitivity

- Larger number of atoms: 2D-MOT and higher power Raman lasers
- Lower detection noise: minimize stray light and use ultra-low noise electronics
- Larger contrast: remove thermal atoms with better velocity selection
- Lower fluctuations of main experimental parameters

• ...

Coriolis effect compensation

- Tip-tilt mirror steering the retro-reflected Raman beam to compensate for the Earth rotation
- Already shown to improve contrast in AI with LMT beam splitters
- In MAGIA, contrast drop due to Coriolis is minimal, but still detectable thanks to the large SNR

J. M. Hogan et al., Proc. Intern. School of Physics "Enrico Fermi" CLXVIII, 411 (2009)
S.-Y. Lan et al., PRL <u>108</u>, 090402 (2012)
F. Sorrentino et al., Phys. Rev. A 89, 023607 (2014)

MAGIA: increasing sensitivity

Current sensitivity to differential acceleration: 3x10⁻⁹ g @ 1s (=QPN for 4x10⁵ atoms)

[1] G. Lamporesi et al., Phys. Rev. Lett 100, 050801 (2008)

[2] F. Sorrentino et al., New J. Phys. 12, 095009 (2010)

[3] F. Sorrentino et al., Phys. Rev. A 89, 023607 (2014)

MAGIA: Final sensitivity

2

0.8

Repetition period of experimental cycle: 1.9 s
Number of points per ellipse: 720 (23 min)
Number of launched atoms: ~10⁹ per cloud
Number of detected atoms: ~4x10⁵ per cloud
Sensitivity to ellipse angle: ~ 9 mrad/shot
Sensitivity to differential gravity: 3x10⁻⁹ g /√Hz
Sensitivity in *G* measurements: 5.7x10⁻²/√Hz
Integration time to *G* at 10⁻⁴: 100 hours

MAGIA: Systematics

- Precise characterization of source masses (weight, density homogeneity, shape, position)
- Precise characterization of atomic trajectories
- Calibration of relative detection efficiency in the two interferometer outputs
- Removal of k-independent biases (Zeeman shift)
- Removal of k-dependent biases (Coriolis acceleration)

INERMET 180K (95% W, 3.5% Ni, 1.5% Cu) Hot isostatic pressing (1200 °C, 1500 atm)

Density= 18 g cm⁻³ Resistivity= 12 x 10⁻⁸ Ω m Thermal expansion = 5 x 10⁻⁶ K⁻¹ Surface roughness = 3 μ m

24 cylinders External radius = 5 cm Height = 15 cm Cylinder mass = 20 kg Total mass \sim 500 kg

DEGLI STUDI FIRENZE

Hot Isostatic Pressing at 1200 C°
and 1500 atm

Ultrasonic and destructive test of homogeneity of probe cylinders to 10⁻⁴

Oscillation of cylinders on air cushion reveal radial inhomogeneities

In collaboration with IMGC, Torino

In collaboration with LNF, Frascati

G. Lamporesi, A. Bertoldi, A. Cecchetti, B. Dulach, M. Fattori, A. Malengo, S. Pettorruso, M. Prevedelli, G.M. Tino, Source Masses and Positioning System for an Accurate Measurement of G, Rev. Scient. Instr. 78, 075109 (2007)

Optimized atomic trajectories

UNIVERSITÀ DEGLI STUDI FIRENZE

INFN

- In the presence of Earth's gravity gradient, the vertical position of the atoms would convert into phase shift of the atom interferometer as $\sim 1 \text{ rad/m}$
- The high density of tungsten allows to compensate for the Earth's gravity gradient locally
- We first fix the C masses configuration, and vary the clouds apogees until the phase shift is stationary; then we adjust the F masses configuration to have a stationary phase again

Use of k-reversal to improve systematics

- Interferometer phase is affected by systematic shifts, which can be sorted into
 - k_{eff}-dependent: Coriolis (dominating), wave-front distortions, two-photon light shift (negligible in our case)
 - k_{eff}-independent: magnetic gradients, one-photon light shift
- Alternating measurements with k_{eff} directed upward and downwards allows to cancel out systematic errors from k_{eff}-independent terms; e.g. tiny changes in magnetic fields when moving the source masses
- Need good overlap of trajectories for direct-k_{eff} and reverse-k_{eff} interferometers

Measurement protocol

• Ellipse phase is the sum of gravitationally induced phase, the k_{eff}-independent spurious shift and the k_{eff}-dependent spurious phase shift:

$$\begin{cases} \Phi^{dir} = \Delta + \alpha + \beta \\ \Phi^{rev} = -\Delta + \alpha - \beta \end{cases}$$

- For each configuration of source masses, we acquire two (interleaved) ellipses with direct and reversed k_{eff}
- We combine the four ellipse angles
 - the differential phase shift contains the gravitational effect of source masses plus twice the Close-Far change of k_{eff}-dependent terms

$$\Delta \Phi_{tot} = \Phi_C^{dir} - \Phi_F^{dir} - (\Phi_C^{rev} - \Phi_F^{rev}) = 2(\Delta_C - \Delta_F) + 2(\beta_C - \beta_F)$$

• the other linear combination provides a measurement of twice the Close-Far change of independent phase shift

$$\Xi = \Phi_C^{dir} + \Phi_C^{rev} - (\Phi_F^{rev} + \Phi_F^{rev}) = 2(\alpha_C - \alpha_F)$$

(July 2013) Relative uncertainty ~ 116 ppm (statistical)

Precision measurement of the Newtonian gravitational constant using cold atoms

G. Rosi¹, F. Sorrentino¹, L. Cacciapuoti², M. Prevedelli³ & G. M. Tino¹

Europaan Laboratore Nor Non-Linear Service

FIRENZE

INFN

About 300 experiments have tried to determine the value of the Newtonian gravitational constant, G, so far, but large discrepancies in the results have made it impossible to know its value precisely¹. The weakness of the gravitational interaction and the impossibility of shielding the effects of gravity make it very difficult to measure G while keeping systematic effects under control. Most previous experiments performed were based on the torsion pendulum or torsion balance scheme as in the experiment by Cavendish² in 1798, and in all cases macroscopic masses were used. Here we report the precise determination of G using laser-cooled atoms and quantum interferometry. We obtain the value $G = 6.67191(99) \times 10^{-11} \text{ m}^3 \text{ kg}^{-1} \text{ s}^{-2}$ with a relathe relevant gravitational signal. An additional cancellation of commonmode spurious effects was obtained by reversing the direction of the two-photon recoil used to split and recombine the wave packets in the interferometer¹⁸. Efforts were devoted to the control of systematics related to atomic trajectories, the positioning of the atoms and effects due to stray fields. The high density of tungsten was instrumental in maximizing the signal and in compensating for the Earth's gravitational gradient in the region containing the atom interferometers, thus reducing the sensitivity of the experiment to the vertical position and size of the atomic probes.

The atom interferometer is realized using light pulses to stimulate

 $G = 6.67191(77)(62) \times 10^{-11} \text{ m}^3 \text{ kg}^{-1} \text{ s}^{-2}$

Relative uncertainty: 150 ppm

G. Rosi, F. Sorrentino, L. Cacciapuoti, M. Prevedelli & G. M. Tino, Precision Measurement of the Newtonian Gravitational Constant Using Cold Atoms NATURE vol. 510, p. 518 (2014)

Determination of G

G. Rosi, F. Sorrentino, L. Cacciapuoti, M. Prevedelli & G. M. Tino, Precision Measurement of the Newtonian Gravitational Constant Using Cold Atoms NATURE vol. 510, p. 518 (2014)

MAGIA error budget

Effect	Uncertainty	Correction to G (ppm)	Relative uncertainty $\Delta G/G$ (ppm)
Air density	10%	60	6
Apogee time	$30\mu{ m s}$		6
Atomic clouds horizontal size	$0.5 \mathrm{~mm}$		24
Atomic clouds vertical size	$0.1 \mathrm{mm}$		56
Atomic clouds horizontal position	$1 \mathrm{mm}$		37
Atomic clouds vertical position	$0.1 \mathrm{mm}$		5
Atoms launch direction change C/F	$8\mu{ m rad}$		36
Cylinders density inhomogeneity	10^{-4}	91	18
Cylinders radial position	$10\mu{ m m}$		38
Ellipse fitting		-13	4
Size of detection region	$1\mathrm{mm}$		13
Support platforms mass	$10 \mathrm{~g}$		5
Translation stages position	$0.5\mathrm{mm}$		6
Other effects		<2	1
Systematic uncertainty			92
Statistical uncertainty			116
Total		137	148

M. Prevedelli, L. Cacciapuoti, G. Rosi, F. Sorrentino and G. M. Tino, *Measuring the Newtonian constant of gravitation G with an atomic interferometer*, in 'Newtonian constant of gravitation' Theme Issue of Philosophical Transactions A, 372, 20140030 (2014)

Measurement of G

Systematic	$\delta G/G$
Initial Atom Velocity	1.88×10^{-3}
Initial Atom Position	1.85×10^{-3}
Pb Magnetic Field Gradients	$1.00 imes 10^{-3}$
Rotations	0.98×10^{-3}
Source Positioning	0.82×10^{-3}
Source Mass Density	0.36×10^{-3}
Source Mass Dimensions	0.34×10^{-3}
Gravimeter Separation	0.19×10^{-3}
Source Mass Density inhomogeneity	0.16×10^{-3}
TOTAL	3.15×10^{-3}

Systematic error sources dominated by initial position/velocity of atomic clouds. $\delta G/G \sim 0.3\%$.

Next Generation: <1e-4, exp't in progress at AOSense, Inc. in colloboration with LLNL.

STANFORD UNIVERSITY

*Project of Measuring G with AI in HUST

HUST: Huazhong University of Science & Technology

Source masses : 24×10Kg spheres **Gravitational signal**: $\Delta g = 120 \mu Gal$ **Differential gravity sensitivity**: $\sigma_{\Delta g} = 0.01 \mu Gal @ 10^4 s$ **Project target**

δ*G* / *G* ~ 100ppm

Future prospects to improve the measurement of G with atom interferometry

- Highly homogeneous (lower-density, e.g. silicon) source mass
- Higher sensitivity atom interferometer
- Different scheme with better definition of atomic velocities
- Smaller size of the atomic sensor
- Atom with lower sensitivity to magnetic fields

Possible scheme for MAGIA Advanced Ultracold Sr atoms in optical lattice

Experiments on gravity at small spatial scale

Motivation

• Physics beyond the standard model

Extra space-time dimensions

Deviations from 1/r² law Hierarchy problem: why is gravity so weak?

New boson-exchange forces

Radion – low-mass spin-0 fields with gravitational-strength couplings
Moduli – massive scalar particles producing gravitylike forces
Dilaton – Light scalar in string theory, coupling to nucleons
Axion – pseudoscalar particles explaining smallness of CP violation in QCD for strong nuclear force
Multi-particle exchange forces

• Small observed size of Einstein cosmological constant

• Experimental challenge

N. Arkani-Hamed, S. Dimopoulos, G. Dvali, Phys. Lett. B 429, 263 (1998) N. Arkani-Hamed, S. Dimopoulos, G. Dvali, Phys. Rev. D 59, 086004 (1999)

S. Dimopoulos and G. F. Giudice, Phys. Lett. B 379, 105 (1996) I. Antoniadis, S. Dimopoulos, and G. Dvali, Nuc. Phys. B 516,70 (1998)

T.R. Taylor, G. Veneziano, Phys. Lett. B 213, 450 (1988) D. B. Kaplan, M. B. Wise, J. High Energy Phys. 8, 37 (2000)

Moody and Wilczek, Phys Rev. D 30, 130 (1984) R. Barbieri, A. Romanino, A. Strumia, Phys. Lett. B 387, 310 (1996) L.J. Rosenberg, K.A. van Bibber, Phys. Rep. 325, 1 (2000))

S.R. Beane, Gen. Rel. Grav. 29, 945 (1997) R. Sundrum, Phys. Rev. D 69, 044014 (2004)

• Optical clocks using visible intercombination lines

• New atomic sensors for fundamental physics tests

G. Ferrari, N. Poli, F. Sorrentino, and G. M. Tino, *Long-lived Bloch oscillations with bosonic Sr atoms and application to gravity measurement at micrometer scale*, Phys. Rev. Lett. 97, 060402 (2006)

European Lakeratory for Non-Linear Spectrozepy

FIRENZE

G. Ferrari, P. Cancio, R. Drullinger, G. Giusfredi, N. Poli, M. Prevedelli, C. Toninelli, G.M. Tino, *Precision Frequency Measurement of Visible Intercombination Lines of Strontium*, Phys. Rev. Lett. 91, 243002 (2003)

sub-Doppler laser spectroscopy of Sr in a hollow cathode discharge 0 -> 1 intercombination line

2003

saturation spectroscopy of Sr in a thermal atomic beam 0 -> 1 intercombination line

2009

Magnetic field induced spectroscopy of cold Sr atoms in an optical lattice 0 -> 0 intercombination line

2012

Magnetic field induced spectroscopy of cold Sr atoms in an optical lattice 0 -> 0 intercombination line

N. Poli, C. W. Oates, P. Gill, G. M. Tino, *Optical Atomic Clocks*, Rivista del Nuovo Cimento 36, n. 12, 555 (2013), <u>arXiv:1401.2378</u>

G.M. Tino, M. Barsanti, M. de Angelis, L. Gianfrani, M. Inguscio, *Spectroscopy of the 689 nm intercombination line of strontium using an extended cavity InGaP/ InGaAlP diode laser*, Appl. Phys. B 55, 397 (1992)

G. Ferrari, P. Cancio, R. Drullinger, G. Giusfredi, N. Poli, M. Prevedelli, C. Toninelli, G.M. Tino, *Precision Frequency Measurement of Visible Intercombination Lines of Strontium*, Phys. Rev. Lett. 91, 243002 (2003)

N. Poli, M.G. Tarallo, M. Schioppo, C.W. Oates, G.M. Tino, *A simplified optical lattice clock*, Appl. Phys. B 97, 27 (2009)

N. Poli, M. Schioppo, S. Vogt, St. Falke, U. Sterr, Ch. Lisdat, G. M. Tino, *A transportable strontium optical lattice clock*, Appl. Phys. B (October 2014) DOI:10.1007/s00340-014-5932-9, arXiv:1409.4572v2

UNIVERSITÀ FIRENZE EN Measure gravitational red shift

"David J. Wineland - Nobel Lecture: Superposition, Entanglement, and Raising Schroedinger's Cat". Nobelprize.org. 7 Feb 2013 http://www.nobelprize.org/nobel_prizes/physics/laureates/2012/wineland-lecture.html

Measure gravitational red shift in the lab

Fig. 3. Gravitational time dilation at the scale of daily life. (A) As one of the clocks is raised, its rate increases when compared to the clock rate at deeper gravitational potential. (B) The fractional difference in frequency between two Al* optical clocks at different heights. The Al-Mg clock was initially 17 cm lower in height than the Al-Be clock, and subsequently, starting at data point 14, elevated by 33 cm. The net relative shift due to the increase in

height is measured to be $(4.1 \pm 1.6) \times 10^{-17}$. The vertical error bars represent statistical uncertainties (reduced $\chi^2 = 0.87$). Green lines and yellow shaded bands indicate, respectively, the averages and statistical uncertainties for the first 13 data points (blue symbols) and the remaining 5 data points (red symbols). Each data point represents about 8000 s of clock-comparison data.

C. W. Chou*, D. B. Hume, T. Rosenband and D. J. Wineland, *Optical Clocks and Relativity*, Science Vol. 329 no. 5999 pp. 1630-1633 (2010)

N. Poli, C. W. Oates, P. Gill, G. M. Tino, *Optical Atomic Clocks*, Rivista del Nuovo Cimento 36, n. 12, 555 (2013) - <u>arXiv:1401.2378</u>

The Nobel Prize in Physics 2012 Serge Haroche, David J. Wineland

The Nobel Prize in Physics 2012

Serge Haroche Collège de France and Ecole Normale Supérieure, Paris, France

David J. Wineland National Institute of Standards and Technology (NIST) and University of Colorado Boulder, USA 🖤

Photo: © CNRS Photothèque/Christophe Lebedinsky

Serge Haroche

Phote: © NIST

David J. Wineland

MLA style: "The Nobel Prize in Physics

20 Oct 2012 http://www.nobelprize.org/ nobel prizes/physics/laureates/2012/

2012". Nobelprize.org.

The Nobel Prize in Physics 2012 was awarded jointly to Serge Haroche and David J. Wineland "for ground-breaking experimental methods that enable measuring and manipulation of individual quantum systems"

... Both Laureates work in the field of quantum optics studying the fundamental interaction between light and matter, a field which has seen considerable progress since the mid-1980s.

... The research has also **led to the construction of extremely precise clocks** that could become the future basis for a new standard of time, with more than hundred-fold greater precision than present-day caesium clocks.

Space Optical Clock

N. Poli, M. Schioppo, S. Vogt, St. Falke, U. Sterr, Ch. Lisdat, G. M. Tino, *A transportable strontium optical lattice clock*, Appl. Phys. B (October 2014) DOI: 10.1007/s00340-014-5932-9, arXiv:1409.4572v2

Laser cooling of ⁸⁸Sr

Bloch oscillations of Sr atoms in an optical lattice Precision gravity measurement at µm scale

G. Ferrari, N. Poli, F. Sorrentino, G. M. Tino, Long-Lived Bloch Oscillations with Bosonic Sr Atoms and Application to Gravity Measurement at the Micrometer Scale, **Phys. Rev. Lett.** <u>97</u>, 060402 (2006)

Particle in a periodic potential:Bloch oscillations

periodic potential

$$\bigvee_{\lambda/2} V(z + \lambda/2) = V(z)$$

$$\int_{a}^{5} \left(b \right) + \int_{a}^{6} \left(b \right) + \int_{a$$

$$\Psi(z) = e^{i\frac{q}{\hbar}x} u(z)$$

$$u(z + \lambda/2) = u(z) \quad \text{Bloch's theorem}$$

$$\Psi(z + \lambda/2) = e^{i\frac{q}{\hbar}\frac{\lambda}{2}} \Psi(z)$$

$$v \rangle_n(q(t)) = \frac{1}{\hbar} \frac{dE_n(R(q(t)))}{dq}$$
with a constant external force F
$$q(t) = q(0) + Ft/\hbar$$
Bloch oscillations

Quantum theory for electrons in crystal lattices: **F. Bloch, Z. Phys. 52, 555 (1929)** Never observed in natural crystals (evidence in artificial superlattices) Direct observation with Cs atoms: **M.Ben Dahan, E.Peik, J.Reichel, Y.Castin, C.Salomon, PRL 76, 4508 (1996)**

Persistent Bloch oscillations

G. Ferrari, N. Poli, F. Sorrentino, G. M. Tino, Long-Lived Bloch Oscillations with Bosonic Sr Atoms and Application to Gravity Measurement at the Micrometer Scale, **Phys. Rev. Lett.** <u>97</u>, 060402 (2006)

Modulation of optical lattices

UNIVERSITÀ DEGLI STUDI FIRENZE

V. Ivanov, A. Alberti, M. Schioppo, G. Ferrari, M. Artoni, M. L. Chiofalo, G. M. Tino, *Coherent Delocalization of Atomic Wave Packets in Driven Lattice Potentials*, **Phys. Rev. Lett. 100, 043602 (2008)**

Amplitude modulation

A. Alberti, G. Ferrari, V.V. Ivanov, M. L. Chiofalo, G. M. Tino, *Atomic wave packets in amplitude-modulated vertical optical lattices* **New Journal of Physics 12, 065037 (2010)**

M. G. Tarallo, A. Alberti, N. Poli, M. L. Chiofalo, F.-Y. Wang, G. M. Tino, *Delocalization-enhanced Bloch* oscillations and driven resonant tunneling in optical lattices or precision force measurements, **Phys. Rev. A 86, 033615 (2012)**

Direct measurement of Bloch frequency in real space – Resonant tunneling

 Transport dynamics depends on δ. On resonance the system is described by Bloch states → coherent delocalization of the atomic wavepacket

$$\sigma_z = \sqrt{\sigma_0 + v_\ell^2 t^2 \mathrm{sinc}^2 \left(\frac{\delta}{\Gamma}\right)}$$

- Direct measurement of ω_B by recording the atomic distribution broadening
 - Interrogation up to $\ell = 6$ sixth harmonic
 - Modulation time over 10 s
 - Fourier-limited linewidth $\Gamma/2\pi = 1/\pi t$
 - Sensitivity $\Delta \omega_B = \frac{3}{\pi t^2 v_\ell \ell} \Delta \sigma \sim 1.5 \times 10^{-7} \omega_B$

Poli *et al.*, Phys. Rev. Lett. 106, 038501 (2011) Tarallo *et al.*, Phys. Rev A 86, 033615 (2012)

88Sr

Scheme for the measurement of small distance forces

Objective: $\lambda = 1-10 \ \mu m$, $\alpha = 10^3 - 10^4$

F. Sorrentino, A. Alberti, G. Ferrari, V. V. Ivanov, N. Poli, M. Schioppo, and G. M. Tino, *Quantum sensor for atom-surface interactions below 10* µm, **Phys. Rev. A 79, 013409 (2009)**

Deviations from Newtonian gravity

• Modification of power law in Newton-type force

$$F(r) = G \frac{M_1 M_2}{r^{2+\delta}}$$

• Newton+Yukawa potential

$$V(r) = -G \frac{M_1 M_2}{r} \left[1 + \alpha e^{-\frac{r}{\lambda}} \right] \longrightarrow \text{Exchange of a boson with } m = \hbar/\lambda c$$

• Extra dimensions

• Modified power-law potential

$$V(r) = -G \frac{M_1 M_2}{r} \left[1 + \alpha_N \left(\frac{r_0}{r} \right)^{N-1} \right] \longrightarrow \text{ Exchange of 2 massless particles}$$

Accessible region with atomic probes

• Newton+Yukawa potential

$$V(r) = -G \frac{M_1 M_2}{r} \left[1 + \alpha e^{-\frac{r}{\lambda}} \right] \longrightarrow \text{Exchange of a boson with } m = \hbar/\lambda c$$

• Extra dimensions

Atom elevator

WNIVERSITÀ FIRENZE **Short-distance measurements**

- **Optical elevator** to bring atoms close to a sample surface: trying to measure Casimir-Polder force
- \Rightarrow AM measurement close to the surface (preliminary)

Getting closer:

Experiment at SYRTE

Principle of the experiment

Induced tunneling

- Coupling in the same well:
 - Microwave
 - Co-propagating Raman impulsion
 - Or counter-propagating Raman impulsion
- Coupling between wells:
 - Contra-propagating Raman impulsion (k_{eff}~2k_{Ram})
 - Efficient when $k_{eff} \sim k_{lattice}$
- Resonance:
 - when Raman frequency is detuned by ν_B

$$\Delta v_{Raman} = v_{HFS} + \Delta m \cdot v_B$$

Coupling:

by translation operator in momentum space

$$\Omega_{\Delta m} = \Omega_{U_{lattice}=0} \left\langle W_{m} \left| e^{ik_{eff}\hat{z}} \right| W_{m+\Delta m} \right\rangle$$

with m: well index

G. Tackmann et al., PRA 84, 063422 (2011)

From Franck PEREIRA DOS SANTOS

A trapped atom interferometer for the measurement of short range forces

SYRTE – Observatoire de Paris

The Equivalence Principle

Weak form of Einstein Equivalence Principle → Universality of Free Fall

The trajectory of a freely falling "test" body is independent of its internal structure and composition

• Inertial mass and gravitational mass are equivalent

(force) = (inertial mass) x (acceleration)

(force) = (gravitational mass) x (gravitational field)

 \rightarrow (acceleration) = <u>(gravitational mass)</u> x (gravitational field) (inertial mass)

Test of the equivalence principle with atoms

atom vs macroscopic mass

A. Peters, K.Y. Chung and S. Chu, Nature <u>400</u> , 849 (1999)	¹³³ Cs atoms vs classical gravimeter	
S. Merlet, Q. Bodart, N. Malossi, A. Landragin, F. P. D. Santos, O. Gitlein, and L. Timmen, Metrologia 47, L9 (2010).		
N. Poli, F.Y. Wang, M.G. Tarallo, A. Alberti, M. Prevedelli, G.M. Tino, Phys. Rev. Lett. 106, 038501 (2011)	⁸⁸ Sr atoms vs classical gravimeter	
different atoms		
S. Fray, C. A. Diez, T.W. Hänsch, and M. Weitz, Phys. Rev. Lett. 93, 240404 (2004).	⁸⁷ Rb vs ⁸⁵ Rb	
A. Bonnin, N. Zahzam, Y. Bidel, and A. Bresson, Phys. Rev. A 88, 043615 (2013).	⁸⁷ Rb vs ⁸⁵ Rb	
D. Schlippert, J. Hartwig, H. Albers, L. L. Richardson, C. Schubert, A. Roura, W. P. Schleich, W. Ertmer, and E. M. Rasel, PRL 112, 203002 (2014)	⁸⁷ Rb vs ³⁹ K	
M.G. Tarallo, T. Mazzoni, N. Poli, D.V. Sutyrin, X. Zhang, G.M. Tino, Phys. Rev. Lett. 113, 023005 (2014)	⁸⁷ Sr vs ⁸⁸ Sr	
A. Kellerbauer, et al. (AEGIS collaboration), Nucl. Instr. Meth. Phys. Res. B 266, 351 (2008)	H vs anti-H	
A.E. Charman, et al. (ALPHA collaboration), Nat. Commun. 4, 1785 (2013)		

P. Hamilton, et al, Phys. Rev. Lett. 112, 121102 (2014)

Guglielmo M. Tino, *Colloquium*, Dipartimento di Fisica - Pisa, 4/11/2014

Precision measurement of gravity with cold atoms in an optical lattice and comparison with a classical gravimeter

N. Poli, F.Y. Wang, M.G. Tarallo, A. Alberti, M. Prevedelli, G.M. Tino, **Phys. Rev. Lett. 106, 038501 (2011)**

Bloch oscillations

N. Poli, F.Y. Wang, M.G. Tarallo, A. Alberti, M. Prevedelli, G.M. Tino, **Phys. Rev. Lett. 106, 038501 (2011)**

Precision measurement of gravity with cold atoms in an optical lattice and comparison with a classical gravimeter

N. Poli, F.Y. Wang, M.G. Tarallo, A. Alberti, M. Prevedelli, G.M. Tino, **Phys. Rev. Lett. 106, 038501 (2011)**

Test of the equivalence principle for 0-spin and half-integer-spin atoms: Search for spin-gravity coupling effects

Test of EP with two isotopes of strontium atom:

⁸⁸ Sr	⁸⁷ Sr	
• Boson	 Fermion 	
• Total spin I = 0	 Total spi 	

Total spin \equiv nuclear spin I = 9/2

Comparison of the acceleration of ⁸⁸Sr and ⁸⁷Sr under the effect of gravity by measuring the respective Bloch frequencies in a vertical optical lattice

Suitable system to search for EP violations due to spin-gravity coupling effects

Search for spin-gravity coupling effects

General theoretical framework

- C. M. Will, *The Confrontation between General Relativity and Experiment*, Living Rev. Relativity 9, (2006)

Spin-gravity coupling

- J. Leitner and S. Okubo, Phys. Rev. 136 (1964) B1542.
- F.W. Hehl et al., Rev.Mod.Phys. 48 (1976) 393-416
- N.D. Hari Dass, Phys. Rev. Lett. 36 (1976) 393.
- S. Capozziello et al., Ann. Phys. 10 (2001) 713.
- D. Bini et al., Class. Quantum Grav. 21 (2004) 3893.
- B. Mashhoon, Lect. Notes Phys. 702 (2006) 112.
- Silenko & Teryaev, Phys. Rev. D 76 (2007) 061101(R).
- W.-T. Ni, *Searches for the role of spin and polarization in gravity*. Reports on Progress in Physics 73 (2010) 6901.

Test of the equivalence principle with ⁸⁸*Sr and* ⁸⁷*Sr atoms*

- Atomic beam from an oven at 430°C
- Zeeman-slowed down to 50 m/s
- Two cooling stages sequence in MOT
 - \circ Broad transition 461 nm, γ = 32 MHz
 - \circ Narrow transition 689 nm, $\gamma = 7$ kHz

Loaded alternately in a vertical OL @ 532 nm

- waist 300 μm

$$U_0 = 6E_R$$

- lifetime >10 s

T: 1 µK

 \vec{g}

500 µm

1×10⁶ atoms T: 1.4 μK

M.G. Tarallo, T. Mazzoni, N. Poli, D.V. Sutyrin, X. Zhang, G.M. Tino, *Test of Einstein Equivalence Principle for 0-Spin and Half-Integer-Spin Atoms:Search for Spin-Gravity Coupling Effects,* **Phys. Rev. Lett.** <u>113</u>, 023005 (2014)

WINTERVIEW CONTRICT Differential gravity measurements for ⁸⁸Sr and ⁸⁷Sr – Equivalence Principle test

Weak Equivalence Principle test with coherent probe masses with and without nuclear spin: ⁸⁸Sr (I = 0) and ⁸⁷Sr (I = 9/2)

Measuring **Eötvös ratio** that depends only on Bloch frequencies and mass ratio $R_m = \frac{m_{88}}{m_{87}}$ (*)

$$\eta = \frac{a_{88} - a_{87}}{(a_{88} + a_{87})/2} = \frac{\nu_{88} - R_m \nu_{87}}{(\nu_{88} + R_m \nu_{87})/2}$$

Uncertainty for each point is the quadratic sum of statistical error and systematics uncertainty

Final result: $\eta = (0.2 \pm 1.6) \times 10^{-7}$

Where uncertainty corresponds to the standard error of the weighted mean

(*) known better than 10⁻¹⁰: Rana *et al.*, PRA 86, 050502 (2012)

M.G. Tarallo, T. Mazzoni, N. Poli, D.V. Sutyrin, X. Zhang, G.M. Tino, Test of Einstein Equivalence Principle for 0-Spin and Half-Integer-Spin Atoms:Search for Spin-Gravity Coupling Effects, **Phys. Rev. Lett.** <u>113</u>, 023005 (2014)

Search for spin-gravity coupling

We consider possible EEP violation due to **spin-gravity coupling** generated by a gravitational potential of the form

$$V_{g,A}(z) = (1 + \beta_A + kS_z)m_Agz$$

m_A is the rest mass of the atom

 ${\rm S}_{\rm z}$ is the projection of the spin along gravity direction

k is the model-dependent spin-gravity coupling strength

W.-T. Ni, Rep. Prog. Phys. 73, 6901 (2010) C. Lammerzahl, Class. Quantum Grav. 15, 13 (1998)

Each ⁸⁷Sr spin component $S_z = I_z$ will feel different gravitational forces due to different spin-gravity coupling. For unpolarized sample \rightarrow broadening of the resonant tunneling spectra

Deviations $\Delta\Gamma$ of measured linewidth from Fourier linewidth, corrected by systematics (two-body collisions, residual magnetic field)

 \rightarrow Upper limit on spin-gravity coupling k

$$\Delta\Gamma = 2I_{87}kl\nu_{87}$$

$$\implies \qquad k = (0.5 \pm 1.1) \times 10^{-7}$$

Apparatus

Ultracold atom source >10⁶ atoms at 50 nK 3e5 atoms at 1.6 nK Optical Lattice Launch 13.1 m/s with 2372 photon recoils to 9 m Atom Interferometry 2 cm 1/e² radial waist 6 W total power Dynamic nrad control of laser angle with precision piezo-

Detection

actuated stage

Spatially-resolved fluorescence imaging

Two CCD cameras on perpendicular lines of sight

Current demonstrated statistical resolution, ~5e-13 g in 1 hr (87Rb) **STANFORD UNIVERSITY** From M. Kasevich, ICAP 2014

Contrast vs. momentum recoil at 2T = 2.3 s

Interferometry with Bose-Einstein Condensates in Microgravity

H. Müntinga,¹ H. Ahlers,² M. Krutzik,³ A. Wenzlawski,⁴ S. Arnold,⁵ D. Becker,² K. Bongs,⁶ H. Dittus,⁷ H. Duncker,⁴ N. Gaaloul,² C. Gherasim,⁸ E. Giese,⁵ C. Grzeschik,³ T. W. Hänsch,⁹ O. Hellmig,⁴ W. Herr,² S. Herrmann,¹ E. Kajari,^{5,10} S. Kleinert,⁵ C. Lämmerzahl,¹ W. Lewoczko-Adamczyk,³ J. Malcolm,⁶ N. Meyer,⁶ R. Nolte,⁸ A. Peters,^{3,11} M. Popp,² J. Reichel,¹² A. Roura,⁵ J. Rudolph,² M. Schiemangk,^{3,11} M. Schneider,⁸ S.T. Seidel,² K. Sengstock,⁴ V. Tamma,⁵ T. Valenzuela,⁶ A. Vogel,⁴ R. Walser,⁸ T. Wendrich,² P. Windpassinger,⁴ W. Zeller,⁵ T. van Zoest,⁷ W. Ertmer,² W. P. Schleich,⁵ and E. M. Rasel^{2,*}

Atom interferometers covering macroscopic domains of space-time are a spectacular manifestation of the wave nature of matter. Because of their unique coherence properties, Bose-Einstein condensates are ideal sources for an atom interferometer in extended free fall. In this Letter we report on the realization of an asymmetric Mach-Zehnder interferometer operated with a Bose-Einstein condensate in microgravity. The resulting interference pattern is similar to the one in the far field of a double slit and shows a linear scaling with the time the wave packets expand. We employ delta-kick cooling in order to enhance the signal and extend our atom interferometer. Our experiments demonstrate the high potential of interferometers operated with quantum gases for probing the fundamental concepts of quantum mechanics and general relativity.

- STE-QUEST Mission -

Test of Gravitational Red Shift and Equivalence Principle

European Space Agency Agonco spatialo ouropóonno

October 14, 2008

• home	Gravitational Waves Detection with Atom Interferometry Conference	
▶ events		
• calls	Apply Schedule	
 opportunities 	Organizers	
visit info		
weekly participants	Guglielmo M. Tino, University of Firenze, Italy Flavio Vetrano, University of Urbino, Italy	
staff	Period: from 23-02-2009 to 24-02-2009 Deadline: 15-01-2009	
computing	Note: The number of participants is limited to 50 The participation fee for the Workshop	
	is 150 Euros including registration, coffee-breaks, lunches and the social dinner. The fee should be paid cash on arrival at the registration desk	
	Abstract	
	The possibility of using atom interferometers to detect gravitational waves is attracting increasing interest as	
	an alternative to other detectors. Several papers were published discussing theoretical and experimental	
	aspects. Although the results show that dedicated technological developments are still needed to achieve the	
	required sensitivity values which are beyond those presently available, newschemes for atom interferometers,	
	beam splitters and high flux coherent atomic sources could lead to an increase in sensitivity and make atom	
	interferometers competitive with other gravitational wave detectors. The Workshop on "Gravitational Waves	
	Detection with Atom Interferometry" will bring together scientists interested in theoretical and experimental	

Special issue on *Gravitational Waves Detection with Atom Interferometry* G.M. Tino, F. Vetrano, C. Laemmerzahl Editors, General Relativity and Gravitation **43**, 1901 (2011)

Two possible schemes

• *Single atom interferometer*

università degli studi FIRENZE

INFN

G.M. Tino and F. Vetrano, *Is it possible to detect gravitational waves with atom interferometers?* Class. Quantum Grav. 24, 2167 (2007)

Differential scheme

S. Dimopoulos, P. W. Graham, J. M. Hogan, M. A. Kasevich, S. Rajendran, *Atomic gravitational wave interferometric sensor*, Phys. Rev. D 78, 122002 (2008)

Application to Gravitational Wave Detection

FIRENZE ET Test of quantum gravity models

PRL 103, 171302 (2009) PHYSICAL REVIEW LETTERS

week ending 23 OCTOBER 2009

Constraining the Energy-Momentum Dispersion Relation with Planck-Scale Sensitivity Using Cold Atoms

Giovanni Amelino-Camelia,¹ Claus Laemmerzahl,² Flavio Mercati,¹ and Guglielmo M. Tino³

¹Dipartimento di Fisica, Università di Roma "La Sapienza" and Sezione Roma1 INFN, Piazzale Moro 2, 00185 Roma, Italy ²ZARM, Universität Bremen, Am Fallturm, 28359 Bremen, Germany

³Dipartimento di Fisica and LENS, Università di Firenze, Sezione INFN di Firenze, Via Sansone 1, 50019 Sesto Fiorentino, Italy (Received 22 June 2009; published 21 October 2009)

> We use the results of ultraprecise cold-atom-recoil experiments to constrain the form of the energymomentum dispersion relation, a structure that is expected to be modified in several quantum-gravity approaches. Our strategy of analysis applies to the nonrelativistic (small speeds) limit of the dispersion relation, and is therefore complementary to an analogous ongoing effort of investigation of the dispersion relation in the ultrarelativistic regime using observations in astrophysics. For the leading correction in the nonrelativistic limit the exceptional sensitivity of cold-atom-recoil experiments remarkably allows us to set a limit within a single order of magnitude of the desired Planck-scale level, thereby providing the first example of Planck-scale sensitivity in the study of the dispersion relation in controlled laboratory experiments.

$$E = \sqrt{p^2 + m^2 + \Delta_{QG}(p, m, M_P)}$$

$$E \simeq m + \frac{p^2}{2m} + \frac{1}{2M_P} \left(\xi_1 m p + \xi_2 p^2 + \xi_3 \frac{p^3}{m} \right)$$

$$|\xi_1| \sim 1 \text{ to } |\xi_1| \sim 10^3 \qquad -6.0 < \xi_1 < 2.4 \quad |\xi_2| \le 10^9$$

Search for physics beyond the SM

PHYSICAL REVIEW A 89, 052118 (2014)

Testing the a_{μ} anomaly in the electron sector through a precise measurement of h/M

F. Terranova¹ and G. M. Tino^{2,*}

¹Department of Physics, University of Milano-Bicocca and INFN, Sezione di Milano-Bicocca, Milano, Italy ²Department of Physics and Astronomy and LENS Laboratory, University of Florence, INFN Sezione di Firenze, Sesto Fiorentino (FI), Italy (Received 13 April 2014; published 19 May 2014)

The persistent $a_{\mu} \equiv (g - 2)/2$ anomaly in the muon sector could be due to new physics visible in the electron sector through a sub-ppb (parts per 10⁹) measurement of the anomalous magnetic moment of the electron a_{e} . Driven by recent results on the electron mass [S. Sturm *et al.*, Nature 506, 467 (2014)], we reconsider the sources of uncertainties that limit our knowledge of a_{e} including current advances in atom interferometry. We demonstrate that it is possible to attain the level of precision needed to test a_{μ} in the naive scaling hypothesis on a time scale similar to next-generation g - 2 muon experiments at Fermilab and JPARC. In order to achieve this level of precision, knowledge of the quotient h/M, i.e., the ratio between the Planck constant and the mass of the atom employed in the interferometer, will play a crucial role. We identify the most favorable isotopes to achieve an overall relative precision below 10^{-10} .

DOI: 10.1103/PhysRevA.89.052118

PACS number(s): 06.20.Jr, 13.40.Em, 03.75.Dg

I. INTRODUCTION

In the last 40 years, the experimental accuracy of the anomalous magnetic moment of the muon $a_{\mu} = (g - 2)_{\mu}/2$ has been improved by more than five orders of magnitude [1]. The final results of the Fermilab E821 experiment [2] shows a clear discrepancy with respect to the Standard Model (SM) prediction, corresponding to an ~3.5 σ deviation. This puzzling outcome has boosted a vigorous experimental program, and new results from the E989 Fermilab [3] and g-2 JPARC [4] experiments are expected in a few years. If the origin of the muon discrepancy is due to physics beyond the SM, similar effects are expected in the electron sector too. In particular, corrections due to new physics [(NP); i.e., physics beyond the SMI should appear in the electron magnetic moment a_{-}

the atom employed in the atomic interferometer (Sec. III D), and the ratio between the Planck constant and the atom mass (h/M; Sec. III E). For each of these observables we determine the best current accuracy and the improvements that are needed to reach the goal sensitivity. The sensitivity to the NP of a_e and the comparison with NP effects in the muon sector are discussed in Sec. IV.

II. THE a_{μ} ANOMALY AND ITS ELECTRON COUNTERPART

Precise measurement of the anomalous magnetic moment of the electron $a_e = (g - 2)_e/2$ is one of the most brilliant tests of QED and a key metrological observable in fundamental

Applications of new quantum sensors based on atom interferometry

- Measurement of fundamental constants
- New definition of kg
- Test of equivalence principle
- Measurement of the gravitational redshift
- Tests of quantum gravity
- Short-distances forces measurement
- Search for electron-proton charge inequality
- New detectors for gravitational waves ?
- Development of transportable _____ atom interferometers _____
- geophysicsspace

G

COURSE 188

edited by G. M. Tino and M. A. Kasevich

PROCEEDINGS INTERNATIONAL SCHOOL OF PHYSICS «ENRICO FERMI»

COURSE 188

Atom Interferometry

edited by G. M. Tino and M. A. Kasevich

G. Tino team members

Previous members and visitors Nicola Poli Fiodor Sorrentino Quentin Bodart Gabriele Rosi Denis Sutyrin Marco Tarallo, Xian Zhang Tommaso Mazzoni Leonardo Salvi Ruben del Aguila Giulio D'Amico Jacopo Grotti Marco Marchetti Marco Menchetti

Luigi Cacciapuoti Marella de Angelis Elisa Tonelli Post-doc, LENS/ICTP PhD student, LENS PhD student, Università di Firenze PhD student, Università di Firenze Diploma student, Università di Firenze Diploma student, Università di Firenze Diploma student, Università di Firenze

Researcher, Università di Firenze

Post-doc. Università di Firenze

Post-doc, Università di Firenze

Post-doc, Università di Firenze

Post-doc, LENS (now at INFN - Genova)

Post-doc, LENS (now at Columbia University)

Long term guest, ESA-Noordwijk Long term guest, CNR Secretary

Andrea Alberti, PhD student Andrea Bertoldi, Post-doc Sergei Chepurov, Institute of Laser Physics, Novosibirsk, visitor Robert Drullinger, NIST, Long term guest Marco Fattori, PhD student Gabriele Ferrari, Researcher, INFM/CNR Antonio Giorgini, PhD and Post-doc Vladyslav Ivanov, Post-doc Marion Jacquey, Post-doc Giacomo Lamporesi, PhD student Yu-Hung Lien, Post-doc Chris Oates, NIST, visitor Torsten Petelski, PhD student Marco Prevedelli, Università di Bologna Marco Schioppo, Post-doc, LENS Juergen Stuhler, Post-doc Fu-Yuan Wang, Post-doc

Support and funding

Istituto Nazionale di Fisica Nucleare (INFN) European Commission (EC) ENI Ministero dell'Istruzione, dell'Università e della Ricerca (MIUR) European Laboratory for Non-linear Spectroscopy (LENS) Ente Cassa di Risparmio di Firenze (CRF) European Space Agency (ESA) Agenzia Spaziale Italiana (ASI) Istituto Nazionale per la Fisica della Materia (INFM) Istituto Nazionale Geofisica e Vulcanologia (INGV)

http://coldatoms.lens.unifi.it/