The LHCb VELO Upgrade

A. Dosil Suárez on behalf of the LHCb Velo upgrade group

13th Pisa Meeting on Advanced Detectors 28th May, 2015 La Biodola, Isola d'Elba (Italy)

Upgrade 00 0000000 Test beam

Conclusions

Outline

LHCb experiment

Current detector

Upgrade LHCb upgrade VELO upgrade

Test beam TPx3 telescope and results

Conclusions

Upgrade 00 0000000 Test beam

The LHCb experiment

LHCb is a forward spectrometer designed to study flavor physics exploiting the enormous production cross sections of heavy hadrons at the LHC

Characteristics

- Built for $\mathcal{L} = 2 \times 10^{32} \mathrm{cm}^{-2} \mathrm{s}^{-1}$ at 25 ns spacing, with an average of $\mu = 0.4$ interactions per bunch crossing
- In 2012 it ran at a $\mathcal{L} = 4 \times 10^{32} \text{cm}^{-2} \text{s}^{-1}$ at 50 ns spacing with $\mu = 1.4$
- Has recorded 1.1 fb^{-1} in 2011 and 2 fb^{-1} in 2012

Efficiencies

- All detectors with $>\sim$ 99% active channels
- ϵ (operation)>94%
- ∼98% are good data

Upgrade •O •O Test beam

Conclusions

LHCb upgrade

- Remove Hardware trigger. Use software-only trigger
- 1 to 30 MHz trigger rate
- Output rate from 12.5 to 100 kHz
- Increase luminosity to $\geq 2 \times 10^{33} \text{ cm}^{-2} \text{s}^{-1}$
- We aim to record 10 fb⁻¹ per year

Apart from the increase in luminosity and trigger rate, we expect an increment of a factor 10 and 20 in the muonic and hadronic channels yield respectively

Upgrade OO Test beam

Conclusions

Detectors upgrade

Upgrade 00 •000000 Test beam

Conclusions

VELO upgrade

Requirements and challenges

- Data-driven readout at 40 MHz \Rightarrow up to 2.85 Tbit/s from whole VELO
- Radiation hardness at 8×10^{15} 1 MeV $_{neq}$ cm². Highly non-uniform radiation: $5.2\times r^{-1.9}$ hits event $^{-1}cm^{-2}$
- Keep/improve performance
- Increase granularity to allow operation at $\mathcal{L} \ge 2 \times 10^{33} \text{cm}^{-2} \text{s}^{-1}$
- Minimise material in acceptance
- Provide fast and robust track reconstruction (essential for software trigger)

Upgrade 00 0000000 Test bean

Conclusions

VELO upgrade

Characteristics of the new VELO

- · From micro-strips to pixels
- Full detector consists of 26 stations (1 station = 2 modules, one on either side of the beam)
- Closest pixel is at 5.1 mm from the beam centre
- Separated from the beam vacuum by a 250 μ m RF foil
- Geometrical efficiency > 99 % for R < 10 mm
- Track rate (and radiation damage) will be 10x higher

LHCb	experiment
0	

Upgrade 00 0000000

Test bean

Conclusions

Modules

- 4 sensor tiles (14x42 mm²), 2 on each side of substrate
- Each tile is bump bonded to 3 ASIC for readout
- Silicon substrate with integrated micro-channels for cooling
- Material in active region ${\sim}0.9\%~X_0$

The LHCb VELO Upgrade

Upgrade ○○ ○○○●○○○ Test beam

Conclusions

ASIC

Velopix

The upgraded VELO will be based on Velopix ASIC (successor of Timepix3) 55 μ m x 55 μ m pixel size, 256 x 256 matrix

- · Binary readout
- Hit rate up to 900 MHits/s. (Above 15.1 Gbit/s)
- Data driven readout: each hit is time-stamped, labeled and sent off chip immediately in a superpixel structure
- Radiation hard up to 400 MRad
- Submission planned for 2015 Q4

Álvaro Dosil Suárez

The LHCb VELO Upgrade

28/05/2015

9/25

Upgrade 00 0000000

Test bean

Conclusions

Silicon sensors

- Planar silicon n-in-p (evaluating n-in-n)
- Tile for 3 VeloPix chips: \sim 43 mm \times 14 mm, thickness 200 μ m
- 55 μ m \times 55 μ m pixel size
- 110 μm gap between ASICs bridged by elongated pixel implants
- Non homogeneous irradiation sets constraints on guard ring design
 - \rightarrow factor \sim 140 difference in fluence from tip to far corner
 - \rightarrow bias voltage at end on life \sim 1000 Volts for tip
 - $\rightarrow~$ guard ring width ${\sim}450~\mu{\rm m}$

Sensor tile on a hybrid board

Hamamatsu prototype sensor

Álvaro Dosil Suárez

The LHCb VELO Upgrade

28/05/2015

Upgrade ○○ ○○○○○○●○ Test beam

Conclusions

Cooling

- High speed pixel readout chips produce a lot of heat (~1.5 W/cm²)
- Keep the sensors at < -20°C to minimize the effects of radiation damage, and to avoid thermal runaway
- Novel method: evaporate CO2 via micro-channels etched in Si substrate
- Bring the cooling power where you need it, using least material
- No CTE difference (Si on Si)

Upgrade 00 000000 Test beam

Conclusions

RF foil

The RF foil is a de facto beam pipe

Severe requirements:

- Vacuum tight ($< 10^{-9}$ mbar l/s)
- Radiation hard
- Low mass but mechanically stable
- Good electrical conductivity to mirror beam currents and shield against RF noise pick-up in FE electronics
- Thermally stable and conductive (heat load from the beam)

Sample with central part thinned to 150 μ m

Material and fabrication:

- Mill foil from solid Al alloy block
- Achieve 250 μ m thickness
- Chemical thinning being investigated to reduce the central part

Upgrade 00 0000000 Test beam

Conclusions

Test beam

TimePix3 telescope

- 8 planes divided in two arms
- Each plane consist in a Timepix3 chip bump bonded to a 300 μ m p-on-n Si sensor
- Track rate > 5 MHz. Only limited by beam intensity
- Resolution at the DUT plane 2 μ m (with 180 GeV/c π beam)
- $1.4 \times 1.4 \text{ cm}^2$ of active area
- Data driven readout

Upgrade 00 0000000 Test beam

Conclusions

Test beam

200 μm thick Hamamatsu 3×1 tile on 3 Timepix3 chips bump-bonded by Advacam

Hit map of a 3×1 tile in a 180 GeV SPS beam

Upgrade 00 0000000 Test beam

Conclusions

Test beam

200 μ m n-on-p sensor from Micron. Bias = -200 V. Non irradiated

Interpixel fractions from left to right 66 %, 30 %, 2.5 %, 1.5 %

200 μ m n-on-p sensor from HPK. Bias = -300 V. Irradiated to 4 \times 10¹⁵ 1 MeV n_{eq} cm²

Interpixel fractions from left to right 93 %, 6 %, 0.8 %, 0.2 %

The LHCb VELO Upgrade

Upgrade 00 0000000 Test beam

Conclusions

Conclusions

The requirements for the LHCb VELO upgrade are very demanding:

- Luminosity will be increased by a factor ≥ 5
- · Keep or improve the performance of the current VELO

Upgrade VELO characteristics:

- Vertex Locator will consist of planar silicon pixels, 55 x 55 μ m²
- The first pixel will be only at 5.1 mm from the beam axis
- Evaporative CO2 cooling in Silicon micro-channel substrate
- Material budget reduction in elements placed in the acceptance (modules, RF-Foil)

Still a lot of work to do:

- Intense testbeam program to validate: sensor technologies, radiation hardness, cooling schemes and readout electronics
- · Sensor, electronics, modules and mechanics production

Installation during long shutdown 2 in 2019

Álvaro Dosil Suárez

The LHCb VELO Upgrade

Backup

Upgrade 00 0000000 Test beam

Conclusions

The Vertex Locator (VELO)

- Silicon strip detector surrounding the interaction point
- 88 silicon n⁺-on-n sensors, 300 μ m thick, R- ϕ design
- · Located only 8 mm from the beams
- Enclosed into a separated vacuum box (RF Foil)
- · Halves are separated for beams injection
- 1 MHz trigger rate
- Bi-phase CO₂ cooling system

Álvaro Dosil Suárez

The LHCb VELO Upgrade

28/05/2015

18/25

The LHCb VELO Upgrade

Upgrade 00 0000000 Test beam

Conclusions

Backup

Comparison between current and upgraded VELO

- A smaller RF foil inner radius (3.5 versus 5.5 mm)
- A smaller inner edge distance to the beams for the sensitive part; R_{det} ~ 5.1 mm versus 8 mm
- A coarser inner pitch (p = 55 μ m pixels versus 40 μ m strips)
- A smaller Si thickness ($t_{det} + t_{ASIC} = 0.4$ versus $t_{det} = 0.6$ mm for an R-*phi* station)
- A smaller z distance between stations ($\Delta z = 25$ versus 30 mm)

Upgrade 00 0000000 Test beam

Conclusions

Backup

Expected performance (IP resolution)

Impact parameter resolution in x for the upgrade VELO for the nominal RF foil thickness (0.25 mm) and three additional thicknesses.

Upgrade 00 0000000 Test bean

Conclusions

Backup

Expected performance (τ and z resolutions)

Upgrade 00 0000000 Test beam

Conclusions

Backup

Expected performance (IP resolution with respect to fluence)

