Novel Real-time Alignment and Calibration of the LHCb **Detector in Run II**

Mark Tobin and <u>Zhirui Xu</u>, on behalf of the LHCb collaboration

École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland

Running Conditions from Run I to Run II

- 15% increase of inelastic collision rate.
- 20% increase of multiplicity per collision.
- 60% increase of $\sigma_{b\bar{b}}$ and $\sigma_{c\bar{c}}$.
- Reduced bunch spacing: 50 ns \Rightarrow 25 ns.
- Similar instantaneous luminosities: $4 \cdot 10^{32}$ cm⁻²s⁻¹.

LHCb Trigger Schemes

Vertex Reconstruction

Decay Time Resolution

LHCD HCO ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

Neutral Pion Reconstruction

Advantages of Real-time Align. and Calib.

• Improves trigger selection.

- Minimises the difference between online and offline performances.
- Ensures the stability of the alignment quality.
- Enables physics analyses directly on the trigger output.

Degrees of Freedom for Alignment

• 3 translations and 3 rotations for each element • Number of elements to be aligned:

• VELO: 86 • TT: 135 • IT: 64 • OT: 496

• Constrained to nominal, survey or previously aligned position

Alignment and Calibration Framework in Run II

- Automatic evaluation at the beginning of each fill.
- Track reconstruction parallelised on several nodes of the HLT farm.
- Alignment constants computated single node.
- Only a few minutes needed to run all alignment tasks.
- Special HLT1 selection line enriched with well known particle decays (e.g. $D \rightarrow K\pi$, $J/\psi \rightarrow \mu\mu$ etc).
- Two different alignment tasks (same state diagram):
- Analyzer performs the track reconstruction based on the alignment constants provided by the iterator. **Iterator** collects the output of the analyzers and minimizes χ^2 computing the alignment constants for the next iteration.

← 2012 data

Simulation

2.5 3 $1/p_{T}$ [GeV⁻¹ c]

LHCb

 $B_s^0
ightarrow J/\psi\phi$

DAQ data volume 1.5 TBytes/second in Run II

Alignment and Calibration Impact on Physics Performance

• The spatial alignment of the detector and the accurate calibration of its subcomponents are essential elements to achieve the best physics performance.

• An exclusive selection using hadron particle identification criteria relies on the complete calibration of the RICH detectors.

OT and **RICH** Calibration Strategy in Run II

• Online analysis task running on single CPU.

• New parameters evaluated from fits to monitoring histograms.

Global Time Alignment for OT

• Drift-time t_{TDC} measurement:

$$t_{\text{TDC}} = t_0 + t_{\text{tof}} + t_{\text{drift}} + t_{\text{prop}},$$

with
$$t_0 = t_{\text{collision}} - t_{\text{clock}} + t_{\text{module}} - t_{\text{gate}}$$

• A single condition which accounts for the time alignment between the collision time and the LHCb clock.

• Run the job for every run and update the constant if above a certain threshold.

VELO, Tracker and Muon System Alignment

- Kalman filter fit to minimise the χ^2 , based on residuals of reconstructed tracks.
- Takes into account multiple scattering and energy loss.
- Uses magnetic field information.
- Applies mass and vertex constraints.
- Independent jobs for VELO, Tracker and Muon system alignment.
- VELO: performed at the beginning of each fill and updated immediately if required.
- Tracker: run after VELO for each fill, update expected every few weeks.
- Muon system: run after Tracker for each fill, variation not expected but used as monitoring.

RICH Mirror Alignment

• Fit the variation of the Cherenkov angle as function of the polar angle to extract the misalignments (θ_x, θ_y) :

 $\Delta \theta = \theta_x \cos \phi + \theta_y \sin \phi$

and θ_x and θ_y are on the HPD detector plane. • The alignment constants (1090) are determined at the beginning of each fill.

RICH Calibration

- Refractive index calibration (1940 constants):
 - Depends on the gas mixture, temperature and pressure.
 - Fit on the Cherenkov angle differences $\Delta \theta$.
 - Corrections calculated and updated every run.
- HPD calibration (2 constants):
- Electrostatic effect (probably) due to switching off the HV for every injection.
- Fit a circle to the HPD image.
- Corrections calculated and updated every run.

Anode images, before and after cleaning and Sobel filter

CALO Calibration

- A relative calibration online using occupancy method.
 - Occupancy for each cell defined as $O(x, y, I_{th}, K) = \sum_{i>l_{th}} F(x, y, i, K) / \sum_{i} F(x, y, i, K)$. • Ratio of occupancies proportional to changes in hardware characteristics.
- HV adjusted on a per fill basis based on the gain changes calculated from the occupancy profiles.

References

.] R. Aaij et al., Int.J.Mod.Phys. A30, 1530022 (2015).	[4] M. Adinolfi et al., Eur.Phys.J. C73, 2431 (2013).
2] R. Aaij et al., JINST 9, 09007 (2014).	[5] W. Hulsbergen, Nucl.Instrum.Meth. A600, 471 (2009).
B] J. Amoraal et al., Nucl.Instrum.Meth. A712, 48 (2013).	[6] R. Arink et al., LHCb-DP-2013-003.

FRONTIER DETECTORS FOR FRONTIER PHYSICS - 13th Pisa Meeting on Advanced Detectors

Contact: zhirui.xu@epfl.ch