High Voltage Monolithic Active Pixel Sensors for the PANDA Luminosity Detector
C. Motzko for the PANDA Luminosity Group

Luminosity determination at PANDA
- Measurement by normalization to the elastic antiproton proton cross section at very small scattering angles ($\Theta = 3 - 8$ mrad)
- Reconstruction of tracks via 4 detector planes

Requirements:
- High angular resolution
- Low material budget
- Measurement at smallest angle
- Minimal distortion of the beam

Vacuum Box
- Low influence of multiple scattering
- Design goal: 10^{-7} mbar
- First test: $5 \cdot 10^{-7}$ mbar

Inner beam pipe
- 500 µm thick V2A pipe
- Vacuum separation
- Design goal: 10^{-8} mbar
- First test: $6 \cdot 10^{-8}$ mbar

Detector Array
- Four half planes for track reconstruction
- Full azimuthal range

Half Plane with Cooling
- V2A pipe melted in aluminum structure
- 5 diamond wafers (200 µm) mounted per half plane
- 5 HV-MAPS glued on each side of the diamond wafer
HV-MAPS

- Industrial HV-CMOS standard (180 nm)
- 2x2 cm², thinned to 50 µm
- Pixel size: 80 µm x 80 µm
- ~50 V bias voltage
- In pixel amplification
- Analog and digital readout integrated:

Performance

Prototype performance studies at MAMI 1 GeV electron beam and at DESY 5 GeV electron beam

- Electron detection efficiency >99%
- Hit resolution given by pixel cell size
- Time resolution: 7 ns
- Laboratory measurements give S/N >15