CLIC vertex detector R&D

Niloufar Alipour Tehrani (CERN & ETH Zürich) On behalf of the CLICdp collaboration

13th Pisa Meeting on Advanced Detectors, 24-30 May 2015

tp://clicdp.web.cern.ch,

CLIC: the Compact Linear Collider

- Concept for a future e^+e^- linear collider
- Staged construction & operation:
- 1. \sqrt{s} =350 GeV: Higgs, top physics inc. threshold
- 2. \sqrt{s} =1.4 TeV: Higher precision Higgs, top Yukawa coupling, first BSM searches
- 3. \sqrt{s} =3 TeV: double Higgs production, high sensitivity direct and indirect BSM
- Instantaneous luminosity at 3 TeV: • $\mathcal{L} = 6 \times 10^{34} \, \text{cm}^{-2} \, \text{s}^{-1}$
- A possible realisation close to CERN: • Maximum length: \sim 50 km

CLIC detector concept

Beam structure allows for triggerless readout and power pulsing of the detectors:

- 312 bunches per train of 156 ns
- Train repetition: 20 ms

Vertex detector requirements

- Aim: efficient identification of heavy quarks in high occupancy.
- Multi-layer barrel and endcap pixel detectors.
- Goal for the pixel detectors: achieve a single point resolution of \sim 3 µm with 25 µm pixel pitch & analog readout.
- Time slicing of \sim 10 ns allows to reduce the impact of beam-induced backgrounds.
- Material budget of $< 0.2\% X_0$ per layer implies: • 50 μ m sensor on 50 μ m ASIC.

• Limit the power dissipation to 50 mW cm^{-2} in sensor area:

50 µm sensor on

700 µm Timepix ASIC

- \Rightarrow power pulsing
- \Rightarrow air-flow cooling: spiral arrangement of the modules in the vertex endcap regions

instrumentation for muon ID

R&D on sensor and readout

Test-beam campaigns

- Data recorded using the EUDET/AIDA telescope at:
- DESY II: 5.6 GeV electron beam
- CERN PS: 10 GeV mixed beam
- CERN SPS: 120 GeV pion beam
- The telescope contains 6 planes of Mimosa26 pixel sensors with a tracking resolution of \sim 3 µm for 5.6 GeV electron beam.

Planar sensors

- The feasibility of thin sensors is studied using the Timepix ASIC with 55 µm pixel pitch.
- 50 μm to 500 μm thick sensors are bump-bonded to 100 μm to 750 μm thick Timepix ASICs.
- Overall detection efficiency > 99%.
- Charge sharing and hit resolution depend on sensor thickness:
- $\cdot \sim$ 4 µm resolution achievable for 2-hit clusters (including the tracking resolution).
- For single-hit clusters, the resolution is determined by the pixel size.

CLICpix readout chip demonstrator

- ASIC in 65 nm CMOS technology.
- Matrix of 64 \times 64 pixels, 25 μ m pixel pitch.
- Simultaneous measurement of time of arrival (TOA) and time over threshold (TOT) per pixel.
- Compatible with power pulsing scheme.
- Selectable compression logic.

Active HV-CMOS sensors

- Capacitively coupled pixel detector (CCPDv3) is used as active sensor \Rightarrow integrates sensor and amplifier.
- Two-stage amplifier in each pixel.
- Through a layer of glue, the CCPDv3 chip is capacitively coupled from its amplifier output to the
- CLICpix readout ASIC \Rightarrow no bump-bonding.
- CCPDv3 is implemented in 180 nm HV-CMOS process and biased at $60 \text{ V} \Rightarrow$ create a depletion layer with fast signal collection through drift.
- High single-hit detection efficiency (high threshold DAC corresponds to low threshold as the chip is operated in negative polarity):

Power pulsing

Power-delivery and power-pulsing design for low-mass vertex detector:

- Turn off the front-end in gaps between bunch trains to reduce average power in ASIC. • Local energy storage in Silicon capacitors and voltage regulation with low-dropout (LDO) regulators.
- FPGA-controlled current source provides small continuous current.
- Low-mass all-Kapton cables.
- Prototype built and tested: I_{ladder} =300 mA, P<45 mW cm⁻².

Air-flow cooling

Forced air-flow is foreseen for the heat removal of the vertex detector.

- Total heat load after power-pulsing: ${\sim}500\,{
 m W}$
- Dry air flows through the barrel and the endcap regions.

- Thermal mockup built for vertex barrel and endcap regions:
- Confirms the air-flow through the barrel and the endcap regions.
- Temperature increase: $\sim 10 \,^{\circ}$ C to $35 \,^{\circ}$ C

