CLIC vertex detector R&D: sensor and readout

Requirements:

- $\bullet\,$ Single point resolution of ${\sim}3\,\mu\text{m}{:}\,\,25\,\mu\text{m}$ pixel pitch & analog readout.
- Time slicing of \sim 10 ns to reduce the impact of beam-induced backgrounds.
- Material budget of $< 0.2\% X_0$ per layer \Rightarrow 50 μm sensor on 50 μm ASIC.

Planar sensors

 The feasibility of thin sensors (50 μm to 500 μm thick) is studied with Timepix ASIC (55 μm pixel pitch).

 ~4 μm resolution achievable for 2-hit clusters (including the tracking resolution).

Active HV-CMOS sensors

- Capacitively coupled pixel detector (CCPDv3) is used as active sensor
 ⇒ integrates sensor and amplifier.
- Through a layer of glue, the CCPDv3 chip is capacitively coupled from its amplifier output to the CLICpix readout ASIC ⇒ no bump-bonding.

Niloufar Alipour Tehrani (CERN-ETHZ)

CLIC vertex detector R&D: powering and cooling

• Beam structure at CLIC allows for triggerless readout and power pulsing of the detectors.

Power pulsing

Power-delivery and power-pulsing design for low-mass vertex detector:

- Turn off the analog front-end of the readout chip in between bunch trains.
- Prototype built and tested: I_{ladder} =300 mA, P<45 mW cm⁻².

Airflow cooling

• To limit the material, no active elements can be used for cooling.

- Dry air flows through the barrel and the endcap regions ⇒ spiral geometry for the endcap regions.
- Total heat load after power-pulsing: ~500 W
- Airflow streamlines.

Thermal mockup.

