THE UPGRADE OF THE ATLAS FIRST LEVEL CALORIMETER TRIGGER

Shimpei Yamamoto (ICEPP/UTokyo) on behalf of the ATLAS Collaboration

FRONTIER DETECTORS FOR FRONTIER PHYSICS — 13th Pisa Meeting on Advanced Detectors May 26-30, 2015

Outline

▶ Introduction

- ATLAS Liquid Argon calorimeter and level-1 trigger
- Challenges toward high luminosity runs
- Upgrading ATLAS level-1 calorimeter trigger
 - New Liquid Argon calorimeter trigger readout
 - New system architecture for trigger processing
 - Expected performances
- Summary

ATLAS Calorimetry

Liquid Argon (LAr) electromagnetic calorimeter

- Lead absorber, LAr as active material and copper/kapton electrode
- Has fine segmentation: 4 layers, ~200k readout channels in total
- Hadronic calorimeters : Tile (steel&scintillator), LAr endcap/forward
- Plays a major role in identifying/measuring e, γ , τ , jet and missing E_T (offline) and provides inputs for their triggers at the hardware level (L1Calo triggers)
 - Higgs discovery! Lots of searches in variety of channels, precise measurements, ..

LHC and ATLAS trigger upgrade timelines

Staged upgrade plan:

Instantaneous luminosity getting increased!!

- Number of interactions per bunch crossing ($\boldsymbol{\mu}$) doubled, tripled and much more..
- ``Pile-up effects" significantly degrade the trigger performance:
 - Degraded LAr signal due to its long drift time: ~450ns drift time (with 2mm gap at 2 kV) vs. 25ns LHC bunch spacing (40MHz)
 - Triggering electromagnetic objects suffers from huge multi-jets background

General upgrade concept

Utilize more calorimeter shower shape information&event topology as in solar algorithms — high-level triggers use this information as well.

Already partially implemented in Run-2: L1Calo provides trigger capabilities based on event topologies.

A.U.

Jets

0.2

0.4

10⁻⁴

10⁻⁵

General upgrade concept (2)

To achieve these trigger features, develop new hardware for trigger readout and processing.

- LAr trigger readout
 - Fully digitized <u>readout with finer granularity & digital filtering</u> for out-of-time pile-up correction and bunch-crossing identification

- L1Calo trigger processing

Pile-up subtraction, employ selection fully based on object features and event topology information

Challenges:

- Highly dense electrical&optical circuit boards & high-speed optical links (up to ~10 Gb/s)
- Signal mapping and data duplication among readout modules

Upgrading LAr trigge

- 60 cells \Rightarrow 4-8 cells in each layer

ightarrow Analog readout \Rightarrow 40MHz digital readout

Upgrading LAr trigger readout: Scheme

Existing cell-readout

Sampled at 40MHz, stored in analog pipelines.

Digitized and transmitted when Level-1 accept received.

LTDB & LDPB

To Tower Builder Board

- 12-bit ADC (custom ASIC) @40MHz
 - Multiplexing 8 channels to 5.12Gb/s optical link, 200Gb/s for each board
- Handle up to 320 SC signals
- 124 boards in total (~25Tb/s)

LDPB

- ATCA standard, 4 Advanced Mezzanine Cards (AMCs) for each
- AMC:
 - high-speed optical transceivers to process
 320 SCs with a short latency
 - Energy&timing measurements by FPGA digital filtering

Both LTDB and LDPS prototypes integrated in the detector system and being demonstrated during Run-2 running.

LTDB & LDPB

To Tower Builder Board

LDPB

Both LTDB and LDPS prototypes integrated in the detector system and being demonstrated during Run-2 running.

SC signal reconstruction by digital filtering

- LDPB can enhance performance on the SC energy reconstruction by processing 40MHz ADC samplings with dedicated digital filtering.
- Filtering algorithms under study.
 - ▶e.g. Wiener filter:
 - Nice ``energy reconstruction" and ``bunch-crossing identification"
 - Expected to be pile-up robust by adopting an active forward pile-up correction

1 Calo: System architecture

Feature extractor modules integrated for Run-3.

eFEX:

Identify $e/\gamma/\tau$ using isolation & cluster shape variables. Flexible rejection algorithms.

jFEX:

Identify jet/ τ and calculate H_T, missing E_T.

Enables pile-up suppression using event energy density

gFEX:

For global event processing, e.g. large-area jets for dedicated physics cases (boosted bosons, ...)

Expected performance: single-object triggers

▶ EM trigger rate:

- Adopting jet rejection using shape variables, the threshold can be lowered by 7 GeV
 - Compared at reference points of 20kHz (Run-2 rate budget) and 95% efficiency
 - Can maintain high photon efficiency (>96%)

Summary

- Upgrade activities ongoing in order to explore full physics of the high-luminosity LHC runs.
- ATLAS is developing new hardware and system for calorimeter trigger readout and processing.
 - Expect improved trigger performances with the upgraded system even in severe pile-up conditions.
 - R&D, design and production in progress toward installation in 2018-2019 (Phase-1 upgrade)
 - Some of them are already integrated for ATLAS Run-2 running:
 - ► LTDB & LDPS prototypes for demonstration
 - Topological trigger with new L1Calo architectures

LTDB & LDPB specifications

To Tower Builder Board

LTDB

- Handle up to 320 SC signals
- 12-bit ADC @40MHz with low power consumption (custom ASIC)
 - <145 mW/channel
- Multiplexing 8 channels to 5.12Gb/s optical link, 200Gb/s for each board
- 124 boards in total (25Tb/s)

LDPS

- ATCA standard, 4 Advanced Mezzanine Cards (AMCs) for each
- AMC designed with FPGA and high-speed optical transceivers to process 320 SCs with a required latency (17 bunch crossings)
- Energy measurement&bunch-crossing identification by FPGA digital filtering Receive 25Tb/s (from LTDB) and transmit 41Tb/s (to L1Calo)

Upgraded L1Calo: Run-2 system architecture

Phase-0 upgrade (for Run 2)

New Multi Chip module (nMCM):

- ASIC→FPGA replacement for digital signal processing
- Better treatment of pile-up (autocorrelation FIR filter & dynamic pedestal subtraction)
- Dedicated calibration for EM and hadron energy scale using dual-channel ADCs

New(extended) Common Merger Module (CMX):

160Mb/s backplane (data from processor modules), multiplicities→trigger objects. Link to L1Topo (24 opt. fibers at 6.4Gb/s)

Topological trigger module (L1Topo):

Enables composite triggers using trigger objects. Topological algorithms.

Expected performance: L1Topo, FEX

▶ L1Topo (already installed for Run-2)

- Can apply selection with topological variables: $\Delta \phi$, $\Delta \eta$, ΔR , H_T , ...
- Challenging analyses will benefit from that.
 - ► ZH→vvbb, di-tau etc.

▶ jFEX (Run-3)

- Gaussian filter: jet energy reconstruction using Gaussian weights
 - ► Less sensitive to pile-up, significant rate reduction thanks to improved trigger turn-on.
 - Expect much better performance by adopting calibrations and optimizing in terms of pile-up.

