Radiation hardness study of the Philips Digital Photon Counter with proton beam

M.Yu. Barnyakov, S.A. Kononov, I.A. Kuyanov, V.G. Prisekin (Budker Institute of Nuclear Physics, Novosibirsk, Russia) T. Frach (*Philips Digital Photon Couning, Aachen, Germany*)

Test setup

factory (BINP's project)

Proton beam extracted from COSY IKP, Forschungszentrum Jülich (Germany)

Proton beam

- P=800 MeV/c (T=295 MeV)
- Beam size ~15 mm
- Intensity up to $2 \cdot 10^7 \text{ s}^{-1}$

Test box

- Two DPC3200-22-44 tiles
- Philips Technology Evaluation Kit for readout
- Tiles were cooled down to -15..-20°C by Peltier elements

Beam diagnostics

 Ionization chambers for total dose measurement

Dark counting rate vs. temperature

Temperature coefficient depends on the level of dark counting rate. The higher DCR the less sensetive it to the temperature variation. \Rightarrow Reduction of DCR by cooling down is less efficient after irradiation.

Dark counting rate vs. total dose

Single event effect probability

- Flash memory fault: content change was not observed.
- <u>Cell inhibit memory fault:</u> one bit-flipping per die after proton fluence of $\sim 1 \times 10^{10}$ cm⁻² (equivalent to 460 rad)
 - can be restored by inhibit map rewriting.

With the dose accumulation the number of noisy cells increases rather than DCR of each cell. \Rightarrow Cell damage caused by single interaction of p⁺ with Si lattice.

Beam profile

evaluated from the fraction of damaged cells per subpixel (32x25 cells)

Map of dark counting rate (DCR) after full dose accumulation

• FPGA failure: average proton fluence between two FPGA failures is $\sim 3 \times 10^9$ cm⁻² (equivalent to **140 rad**)

- can be restored by firmware reload.

Estimation of efficiency degradation

Optimal efficiency is a tradeoff between number of active cells and dead time due to dark conting rate. Minimum dead time for current chip design is 720 ns.

DCR of a die as a function of active cells fraction for different proton fluences.

Optimal efficiency of *single photons* detection as a function of proton fluence.