Characterization of Si Detectors through TCT at Delhi University

G. Jain*, K. Lalwani, R. Dalal, A. Bhardwaj, & K. Ranjan

Centre for Detector & Related Software Technology, Department of Physics & Astrophysics, Delhi University, Delhi - 110007, India

• When a particle hits the sensor, it creates e-h pairs that induce signal at the electrodes by their drift in the electric field within the reverse biased Si sensors.

- LHC Phase II Upgrade will result in an integrated luminosity of about 3000 fb⁻¹ & a luminosity of about 10³⁵ cm⁻²s⁻¹ : Delhi University is contributing in Phase 2 Outer Tracker Upgrade!
- Radiation damage effect on CMS Si Tracker : Breakdown voltage decreases, Depletion voltage increases, charge collection efficiency (CCE) decreases.
- •_New silicon sensors that are radiation hard and have higher breakdown voltage, lower depletion voltage, higher CCE, are required.
- <u>Transient Current Technique</u> is a dynamic characterization technique for sensors.

It is the study of time evolution of charge carriers generated when a laser light is shone on the Device Under Test (DUT). These charge carriers (q) then induce charge (Δq) on the electrodes in proportion to the displacement (Δx) of these charge carriers through the detector depth (d).

 $\Delta q = (\Delta x/d) \cdot q$

TYPES OF TCT TECHNIQUES

- Red Laser TCT
- Creates electron-holes (e-h) on the surface.
- Output signal from charge carrier that travels in the active bulk.
- To find drift velocity, trapping time, CCE.

- Infrared Laser TCT
- Moderate e-h created in bulk.
- Output signal fis a contrubution rom both the charge carriers.
- To measure CCE.

Silicon Sensors R&D group of Delhi University (with C. Gallrapp)

G. Jain (Presenter)

G. Jain, Delhi University, India

ELBA CONFERENCE – 24 TO 30 MAY, 2015

Red Laser TCT Setup Devoloped At Delhi University

 \checkmark Decrease in the signal is voltage dependent, & depends on the drift of the carriers.

Acknowledgement : Authors are thankful to UGC-JRF, DST & ISJRP for financial research support and to PH-DT Lab at CERN &Dr. Christian Gallrapp for help in setting up of TCT setup.

G. Jain, Delhi University, India

DU.

ELBA CONFERENCE - 24 TO 30 MAY, 2015