Radiation testing campaign results for understanding the suitability of FPGAs in detector electronics.

Alessandra Camplani⁽¹⁾, Matthew Cannon⁽²⁾, Hucheng Chen⁽³⁾, Kai Chen⁽³⁾, Mauro Citterio⁽¹⁾, Binwei Deng⁽⁴⁾, Chonghan Liu⁽⁴⁾, Tiankuan Liu⁽⁴⁾, Chiara Meroni⁽¹⁾, James Kierstead⁽³⁾, Helio Takai⁽³⁾, Michael Wirthlin⁽²⁾, Jingbo Ye⁽⁴⁾.

1)INFN Milan, Milan, Italy; (2)Brigham Young University, Provo,USA; (3)Brookhaven National Laboratory, Upton, NY, USA; (4) Southern Methodist University, Dallas, USA.

 $f = 1 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$

The use of a **Field Programmable Gate Array (FPGA)** in high energy physics experiments is only limited by our ability **to mitigate single event effects** induced by the high energy hadrons present in the radiation field.

Radiation induced failures on electronics are tested in facilities:

- With particle energy spectra similar to the expected High Energy Physics (HEP) environment
- At high rates to find single event effects with small cross sections **Electronic devices will be affected by**:
- Single Event effects
- Total ionizing dose
- Displacement damage

	Simulation (one year)	Safety Factor	Test Target* (10 years)	
Ionizing Dose	3.0 rad	10	100 krad	
1 MeV eq. Neutron	6.0 x 10 ¹¹ cm ⁻²	2	1.2 x 10 ¹³ cm ⁻²	
Hadrons (>20 MeV)	8.5 x 10 ¹⁰ cm ⁻²	2	2 x 10 ¹² cm ⁻²	
*1 LHC year = 10^7 s, σ_{pp} = 80 mb, Luminosity = 5 x 10^{34} cm ⁻² s ⁻¹				

Finergy (GeV)

Xilinx Kintex 7 performance tested under irradiation

Rad-hard techniques must prevent:

- Build up of configuration errors in CRAM
- Errors that "breaks" SEC/DED code in BRAM
- Corruption on transmitted data
- Transmitter/receiver de-synchronization

FPGA sensitive to Single Event Upset (SEU)

Mitigation

Triple Modular Redundancy (TMR)

Scrubbing

H4IRRAD, CERN:

- mixed-field (hadrons neutrons)

- neutrons (max energy 800 MeV), wide spectrum similar to cosmic ray background
 - CRAM and BRAM cross **section** measurements

Cross section comparison

	CRAM (cm²/bit)	BRAM (cm ² /bit)	Fluence (particle/cm²)
H4IRRAD - Hadron	1.50 x 10 ⁻¹⁴	1.40 x 10 ⁻¹⁴	1.8 x 10 ⁹
LANSCE - Neutron	6.89 x 10 ⁻¹⁵	6.15 x 10 ⁻¹⁵	5.7 x 10 ¹⁰
TSL - Neutron	6.55 x 10 ⁻¹⁵	-	>5.7 x 10 ¹⁰
TSL - Proton	8.29 x 10 ⁻¹⁵	8.19 x 10 ⁻¹⁵	1.3×10^{13}

The Svedberg Laboratory (TSL), Sweden:

- neutrons (max energy 200 MeV)
 - CRAM and BRAM cross section measurements
- 180 MeV protons
 - CRAM and BRAM cross section measurements
 - performance of the GTX transceivers

CONCLUSION AND OUTLOOK

- No permanent operational failures observed
- TMR plus multi-level scrubbing essential to mitigate SEU in Kintex 7 FPGAs.
- In the full scale ATLAS LAr calorimeter system we could estimate a lane failure every 6.5 minutes.

Future experiments are planned with improved TMR and scrubbing mitigation strategies to further reduce the present error rates.