A current mode bandgap reference circuit has been designed in a 65nm CMOS technology for a possible application in high energy physics experiments. The prototype has been characterized as a function of temperature (from -30°C to +140°C) and voltage supply (from -0.78V to 1.32V) variation. Without trimming, the temperature variation effect is approximately 55 ppm/°C.

Characterization of Bandgap Reference Circuits designed for High Energy Physics Applications

F. De Canio1,3, L. Gaioni2, M. Manghisoni2,3, S. Mattiazzo3,4, L. Ratti1,3, V. Re2,3, E. Riceputi2,3, G. Traversi2,3

University of Bergamo, INFN, University of Pavia, University of Padova

Temperature variation

![Temperature variation graph](image)

- **BANDGAP**
- **STARTUP CIRCUIT**
- **STARTUP CIRCUIT**

- VREF
- VDD
- MNOS
- Q2
- Q1
- Diode
- C1
- Rz
- R1
- Rh
- M1
- M2
- M3
- M10
- M11
- M12
- M13
- M14
- M15

Voltage supply effect

![Voltage supply effect graph](image)
Due to the harsh environment foreseen for this circuit, different devices (BJT, Diodes, MOSFETs) have been considered and implemented in the prototype.

BGRs have been irradiated up to 230Mrad (SiO\(_2\)) with X-rays:

- BGR based on BJT devices shows an increase of the output voltage from 690mV to 737mV: variation of 47mV. Recovers 6mV with Annealing (7 days at room temperature);
- BGR based on diode devices shows an increase of the output voltage from 706mV to 756mV: variation of 50mV. Recovers 6mV with Annealing (7 days at room temperature);
- BGR based on MOS in weak inversion region shows a decrease of the output voltage from 674.8mV to 667.2mV: variation of 7.6mV, degradation. Increase 0.7mV with Annealing (7 days at room temperature).

Conclusions and future activities:

- A voltage shift around 0.6% was measured after irradiation up to about 100 Mrad (SiO\(_2\))
- Irradiation with a monochromatic neutron source is being planned to study BGR sensitivity to bulk damage
- A different bias point of the circuit, featuring higher static currents, has to be used in order to improve the radiation hardness up to 1 Grad (RD53 requirement)
- A new design with trimmable resistance in order to reduce the temperature coefficient was designed

Promising result, but it has to be improved for some application (e.g. HL-LHC)