#### Hyper-K present status and R&D for the next decade

David Hadley University of Warwick 29th May 2015

#### Kamiokande Detectors



Kamiokande 680 tonne fiducial mass (1983)





#### Kamiokande Detectors





Super-Kamiokande 22.5kt fiducial mass (33x Kamiokande)



Kamiokande 680 tonne fiducial mass (1983)





### Kamiokande Detectors





#### Physics at Hyper-K Proton Decay Neutrinos







Supernova

#### Accelerator



#### Broad physics programme.

Atmospheric

Physics at Hyper-K Neutrinos Proton Decay Solar  $p \rightarrow e^+ + \pi^0$ >1.3x10<sup>35</sup> years 90% CL  $\rho \rightarrow \overline{v} + K^+$ 200 solar v per day >3.2x10<sup>34</sup> years 90% CL



Supernova SN ~200,000 @ 10kPC SN ~30-50 @ M31 Indirect dark matter search

Atmospheric Accelerator Leptonic CP violation (see following slides) Mass Hierarchy determination >30  $\theta_{23}$  octant determination  $3\sigma$  for sin<sup>2</sup>  $\theta_{23} > 0.56$  or sin<sup>2</sup>  $\theta_{23} < 0.46$ 

Broad physics programme.

## Leptonic CP Violation

#### ve appearance established

28 events observed (4.3 expected background)

effect is large, opens the

way to leptonic CP

violation  $\delta_{CP}$ .



T2K + reactor experiments First constraints on  $\delta_{CP}$ 

THE UNIVERSITY OF



## Leptonic CP Violation



~2.50 projected significance if maximal CP violation.

to firmly establish CP violation we will need Hyper-K!



#### Why Water Cherenkov?

Scalability

Water is cheap, non-toxic, liquid at room temperature we already know how to build big water WC detectors **Proven technology** 

many years of experience from Super-K low risk

**Excellent performance** 

based on real Super-K and T2K performance







#### Muon



THE UNIVERSITY OF











#### Electron









#### Neutral Pion



Muon



THE UNIVERSITY OF



WARWI



#### Hyper-K (in detail)



CROSS SECTION





### Hyper-K (in detail)

| (Dead Area                                                                                                   | (Dead Area)      | (Dead Area)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DT (Dead Area)   | Dead Area) (Dead Area)        |                                                      |
|--------------------------------------------------------------------------------------------------------------|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------------------------|------------------------------------------------------|
| Detector geo                                                                                                 | metry Total Wate | er Mass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.99 Me          | egaton                        |                                                      |
|                                                                                                              | Inner Dete       | ctor (Fiducial)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Mass 0.74 (0.    | 56) Megaton                   |                                                      |
|                                                                                                              | Outer Dete       | ector Mass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $0.2~{ m Meg}$   | gaton                         |                                                      |
| Photo-sensors Inner detector                                                                                 |                  | etor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 99,000           | 99,000<br>20-inch $\phi$ PMTs |                                                      |
|                                                                                                              |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $20\%~{ m ph}$   | oto-coverage                  |                                                      |
|                                                                                                              | Outer dete       | $\operatorname{ctor}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 25,000           | 8-inch $\phi$ PMTs            |                                                      |
| r Wate                                                                                                       | <b>- - - -</b>   | 5@49500(Pitch of Interemediate Cro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ss Walls)=252450 |                               |                                                      |
| Measurement         F.W.L         F.W.L         Immer Detector         (PMT 10inch)         Outer Water Tank | CROSS SECTION    | Detector<br>Binch)<br>00000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000 | Inner Water Tank | Peteror<br>MI<br>Concre       | Coo Cinning Gom<br>Goo<br>A<br>Outer Detector<br>PMT |
| K                                                                                                            | <u> </u>         | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  | WAR                           | WICK                                                 |

## Detector Site

Candidate site: Tochibura Mine 680m rock overburden 1750m water equivalent (cf SK 2700m)

Hyper-K can be constructed with **existing techniques**.



Alternative site (Mozumi) also under investigation





Stability Analysis







#### Worldwide R&D

CERN

Neutrino

platform





Calibration

Removable

under the light



#### Photo Sensors



#### Photo Sensors



1PE T resolution  $\sigma$  (ns) FWHM (ns) 1PE Q resolution  $\sigma$ /mean Peak-to-Valley ratio

- 50cm HPD (20cm) SK PMT **B&L PMT** 2.1 1.1 7.3 4.1 53% 35% 4.3 2.2
  - 1.4 (1.1) 3.4 (3.3)

Multi-p.e. charge

- 16% (12%)
- 3.9 (5.2)



Originally detectable signal

New signal





# New Intermediate Water Cherenkov Detectors

#### nuPRISM Detector

arXiv:1412.3086 [hep-ex] Instrumented vertical water column Samples a wide range of off-axis angles







# New Intermediate Water Cherenkov Detectors







# New Intermediate Water Cherenkov Detectors



## Project Timeline



## Hyper-K Collaboration

Growing international collaboration: 13 countries, ~230 people

THE UNIVERSITY OF





# Thank you for listening

David Hadley University of Warwick 29th May 2015

www.hyperk.org arXiv:1502.05199 arXiv:1412.4673



ullull-



# New/Upgraded Detectors in the Existing ND280 Complex

#### WAGASHI





#### Water dominated target 4π acceptance



Water based liquid scintillator



An alternative approach is to improve knowledge of neutrinonucleus interactions



e.g. High Pressure Gas TPC

THE UNIVERSITY OF

## Leptonic CP Violation

Measure  $\delta_{CP}$  by comparing data with beam in v-mode with anti-v mode



CP violation can be established at  $3\sigma$  ( $5\sigma$ ) for 76% (58%) of  $\delta_{CP}$  space.





## Near Detector Development



arXiv:1311.4750 [hep-ex]

| Error source [%]               | $\sin^2 2\theta_{13} = 0.1$ |
|--------------------------------|-----------------------------|
| Beam flux and near detector    | 2.9                         |
| (w/o ND280 constraint)         | (25.9)                      |
| Uncorrelated $\nu$ interaction | 7.5                         |
| Far detector and FSI+SI+PN     | 3.5                         |
| Total                          | 8.8                         |

To fully exploit the Hyper-K accelerator neutrino statistics, upgraded near detectors will be needed.



#### Photo Sensors





THE UNIVERSITY OF WARWICK







