

13th Pisa meetings on Advanced Detectors

Kinetic Inductance Detectors for kilopixel intruments at Radiotelescopes

Martino Calvo

Institut Néel, CNRS, Grenoble

Outline

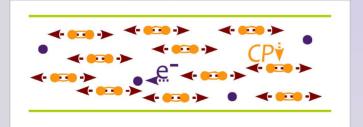
1 - Introduction

Superconductivity and Kinetic Inductance

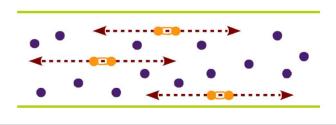
2 – KID theory

What is a KID and how to make it

3 – KID applications

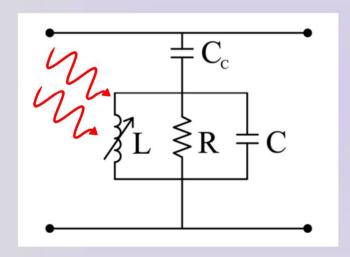

The advantages of KID detectors and their applications

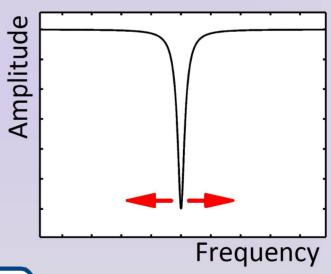
4 - The NIKA2 camera


A kilopixel camera for mm astronomy

The Kinetic Inductance

- In a superconductor below T_c , two different types of charge carriers coexist:
 - Cooper Pairs : paired electrons. Reactive
 - Quasi-Particles: the standard, unbound electrons. Resistive
- When moving, the CP store energy, and show an inertia to changes in it
 - Magnetic field → magnetic inductance, L_m
 - Kinetic energy \rightarrow kinetic inductance, L_k



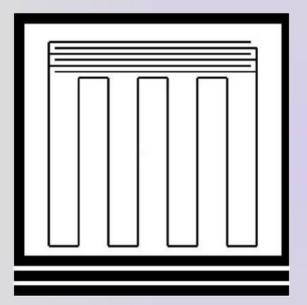


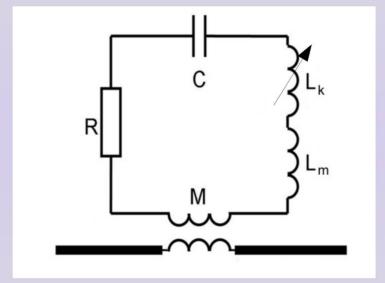
(and $R \neq$)

- Simply put, a KID is a superconducting resonator in which the kinetic inductance is used as sensitive element
- The absorbed power induces a variation of L_k and thus of the resonant frequency, f_0

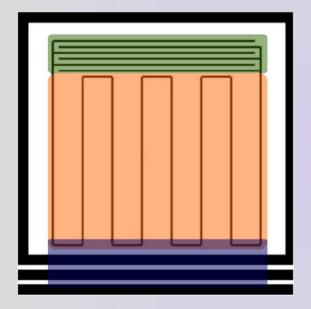
 $\delta P \propto \delta f_0$

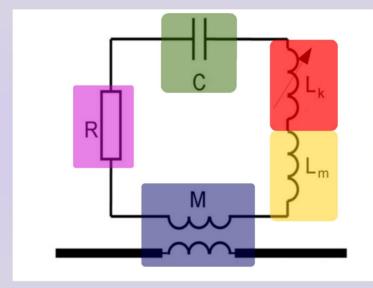
'The' paper: P. Day et al., Nature, 425, 817 (2003)


The Lumped Element KID ('LEKID')


A very easy and effective way of making a KID
 Based on 'lumped element' components (dimensions << wavelength)
 Basically, a 'standard' RLC circuit

The Lumped Element KID ('LEKID')

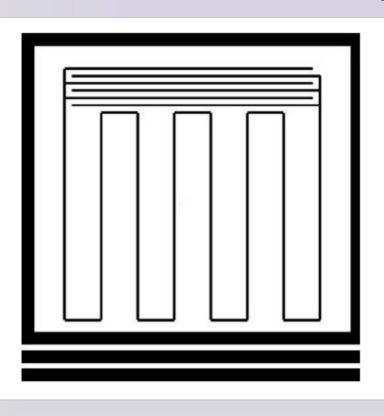

A very easy and effective way of making a KID
 Based on 'lumped element' components (dimensions << wavelength)
 Basically, a 'standard' RLC circuit



The Lumped Element KID ('LEKID')

A very easy and effective way of making a KID Based on 'lumped element' components (dimensions << wavelength) Basically, a 'standard' RLC circuit

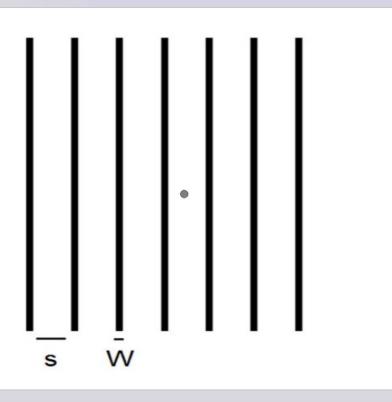
- Kinetic Inductance (CP)
- Geometric Inductance
- **ID Capacitor**
- Residual R (QP)
- Coupling (mag/capa)


The current is *uniform* in the whole meander

$$f_0 = 1/\sqrt{(L_k + L_m) \cdot C}$$

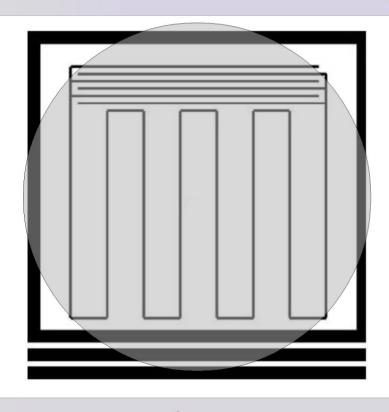
In a LEKID, the current is uniform in the whole meander

The meander shape can be adjusted to get $\mathbf{Z}_{\text{eff}} \approx \mathbf{Z}_{0}$


Therefore, the meander itself can be used as an absorber!

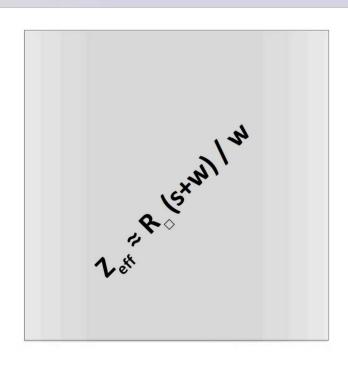
In a LEKID, the current is uniform in the whole meander

The meander shape can be adjusted to get $\mathbf{Z}_{\text{eff}} \approx \mathbf{Z}_{\text{o}}$


Therefore, the meander itself can be used as an absorber!

In a LEKID, the current is uniform in the whole meander

The meander shape can be adjusted to get $\mathbf{Z}_{\text{eff}} \approx \mathbf{Z}_{0}$


Therefore, the meander itself can be used as an absorber!

In a LEKID, the current is uniform in the whole meander

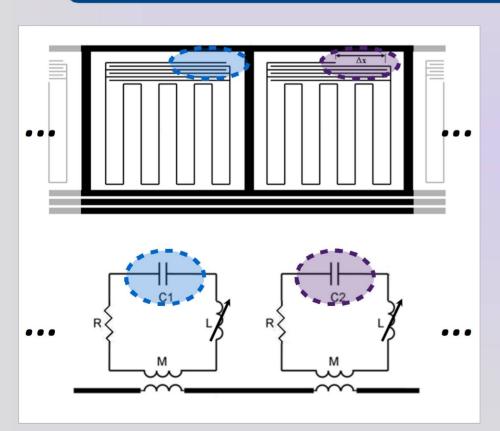
The meander shape can be adjusted to get $\mathbf{Z}_{\text{eff}} \approx \mathbf{Z}_{\text{o}}$

Therefore, the meander itself can be used as an absorber!

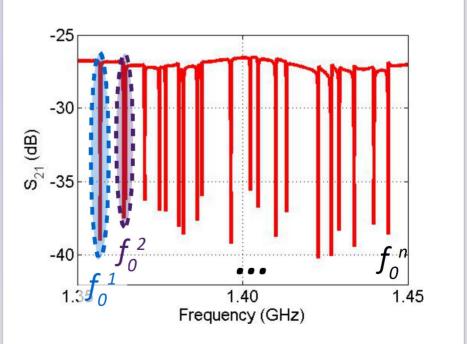
Pros:

- Extremely simple system
- Easy fabrication

Cons:

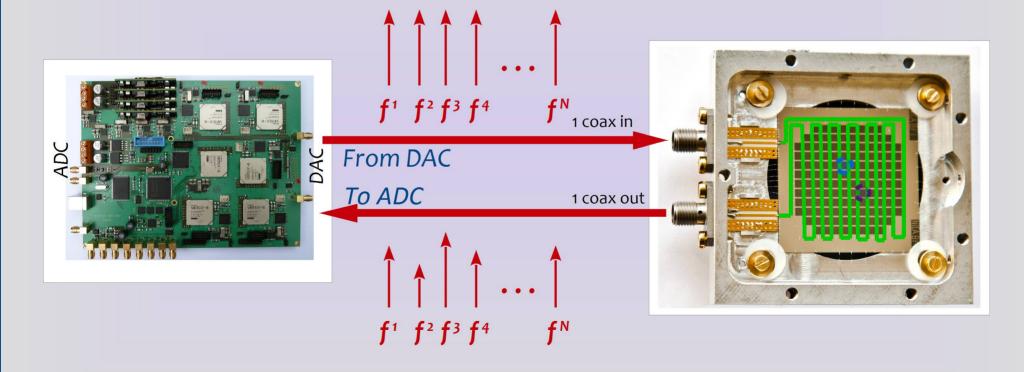

Less flexible than other solutions

Frequency Domain Multiplexing

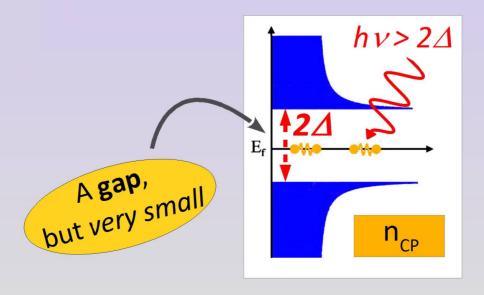

A KID is a very high Q resonator

The f_0 can be varied lithographically (e.g. in a LEKID, $\Delta C \rightarrow \Delta f_0$)

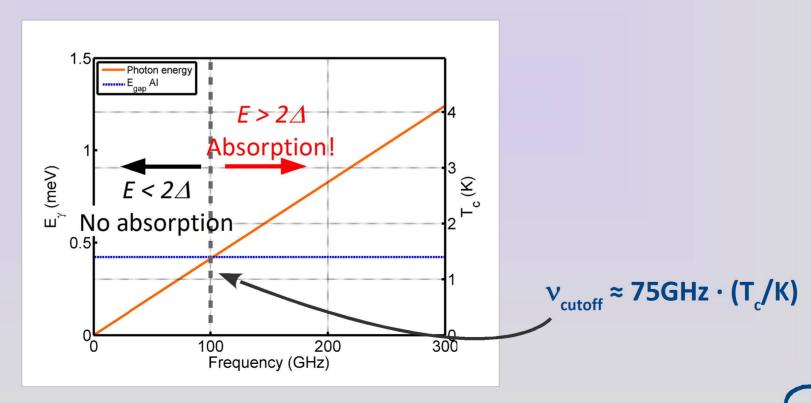
Many resonators can be coupled to a single readout line!


100s to 1000s!

Frequency Domain Multiplexing


To readout the pixels, the superposition of many excitation tones is fed to the readout line (one tone at each f_o)

Each resonator affects **only** the tone corresponding to its own f_o !


KID are intrinsically multiplexable in the frequency domain

- A KID is a pair-breaking detector
- The binding energy of a Cooper Pair is given by: $2\Delta = 3.5 k_b T_c$
 - Quanta of energy lower than the gap do not affect it
- The gap in a superconductor is typically just a fraction of a meV,
 1000 times smaller than in a semiconductor

Effects of the energy gap

- A KID is a pair-breaking detector
 - Quanta of energy lower than 2\(\Delta\) do not affect it
- Optically: Photons with $v < v_{cutoff} = 3.5k_b T_c/h$ are not absorbed

Effects of the energy gap

- A KID is a pair-breaking detector
 - Quanta of energy lower than 2Δ do not affect it
- Optically: Photons with $v < v_{cutoff} = 3.5k_b T_c/h$ are not absorbed
 - KID are viable for frequencies above ~50GHz
 - Can use different superconductors to make integrated circuits

Effects of the energy gap

- A KID is a pair-breaking detector
 - Quanta of energy lower than 2Δ do not affect it
- Thermally: at T<< T_c , almost no phonons have energy >2 Δ

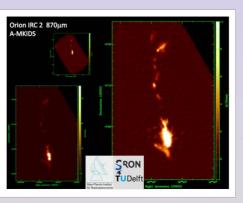
The KID is thermally decoupled from the sorrounding environment

- No need of complex and delicate structures for thermal isolation
 - ─► Easy fabrication
- Almost insensitive to variations in the temperature of the thermal bath
 - → Not prone to microphonics, thermal 1/f, ...
- Fast response, determined by the QP recombination time (au_{qp})
 - \rightarrow Tens of μ s up to few ms

- KID are perfectly suited for *large arrays of ultresensitive detectors*
- But mind: cryogenics is a must!

Astronomy

Photon-noise limit → large number of detectors needed


On-going developments for many bands

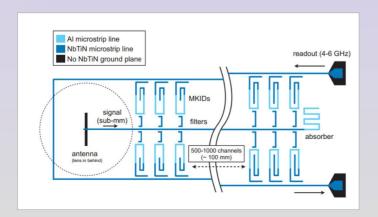
KID theory

NIKA+NIKA2

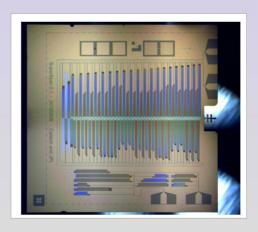
AMKID

MUSIC

- KID are perfectly suited for large arrays of ultresensitive detectors
- But mind: cryogenics is a must!


Astronomy

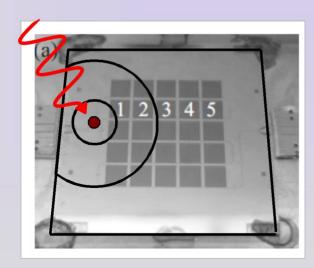
Photon-noise limit → large number of detectors needed


On-going developments for many bands

The next step: integrated planar spectrometers or polarimeters

DESHIMA

SUPERSPEC

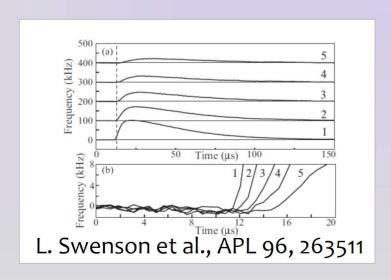


- KID are perfectly suited for *large arrays of ultresensitive detectors*
- But mind: cryogenics is a must!

Phonon mediated detection

High energy particles hitting the substrate generate a cascade of athermal phonons

These can be then sensed using KID



- KID are perfectly suited for *large arrays of ultresensitive detectors*
- But mind: *cryogenics is a must*!

Phonon mediated detection

High energy particles hitting the substrate generate a cascade of athermal phonons

These can be then sensed using KID

Info on delays + peak amplitude

Reconstruct particle E and impact point

Rare events searches **CALDER**

→ SPACEKIDS KIDs on satellites

- KID are perfectly suited for large arrays of ultresensitive detectors
- But mind: cryogenics is a must!

Material properties

Can get information on the behaviour of materials at 100s of GHz

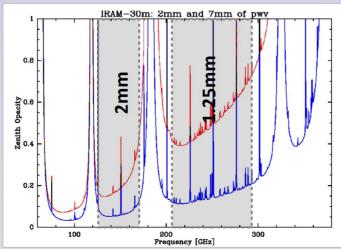
The KID resonances shape is determined by L_{ν} and the residual R → gives info on penetration depth, losses...

The NIKA 2 project

NIKA2: New IRAM KID Array 2

Aim: build an instrument to get the maximum out of the IRAM 30m telescope

• 30 m aperture



17 arcsec @ 2mm

10.5 arcsec @ 1.25mm

- Correct Field Of View up to 6.5 arcmin (NIKA: 2.5 arcmin)
- Measurements in multiple bands possible

One of the best telescopes for mm-wave astronomy!

The NIKA 2 project

Fully deploying the potential of the IRAM telescope means:

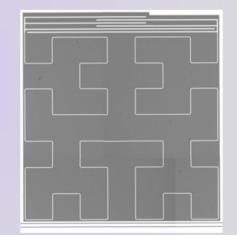
- Fully sampled 6.5 arcmin correct FOV
- Highest possible resolution
- Dual band operation (1.25 and 2 mm)

- Pixels count: 1000 @ 2mm
- 2x 2000 @ 1.25mm
- Detectors at or near the photon noise limit
- Polarization sensitive at 1.25 mm

1000s of ultrasensitive pixels at millimetric wavelengths =

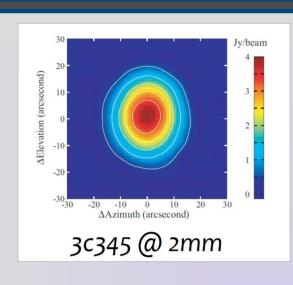
The ideal playground for KID!

A small step back: NIKA


NIKA: a pathfinder instrument before going 'full scale'

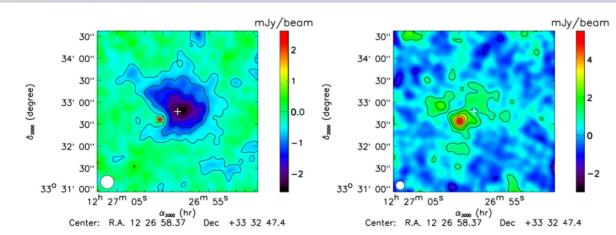
2008-2012 NIKA development. KID improving rapidly!

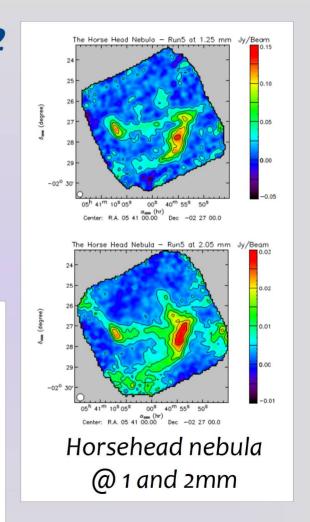
2013 Commissioning of the instrument in its final configuration:


- dual band (2mm and 1.25mm)
- total of > 300 pixel
- LEKID based on the Hilbert fractal geometry (2-pol)

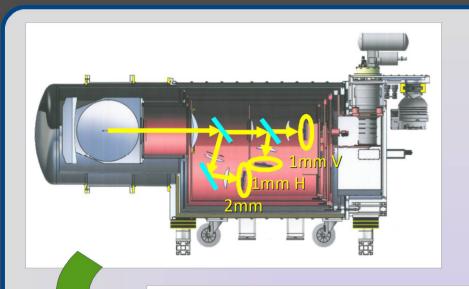
NEFD: 10 mJy s^{0.5} @ 2mm, 35 mJy s^{0.5} @ 1mm

2014 NIKA is the world's first KID camera to open to external astronomers!


The NIKA history in images

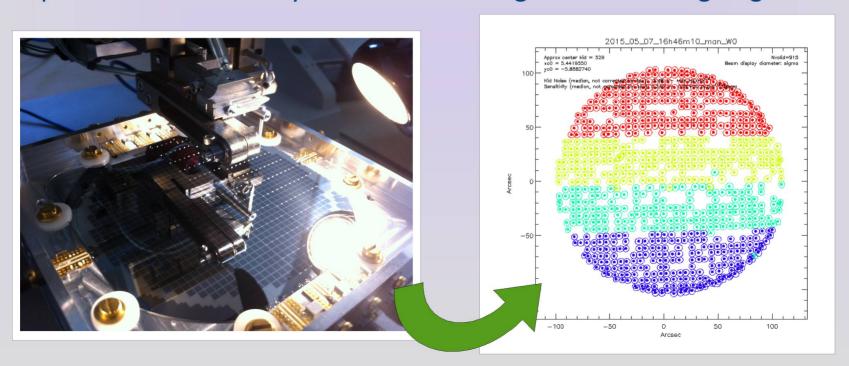

2009

2012


2014

S-Z galaxy cluster CL J1226.9+3332 R. Adam et al., A&A 576 A12, 2015

Current status of NIKA2: cryostat


- Large focal plane → large cryostat
- 2.3m length, 1m diameter, >1ton!

- Already >20 cooldowns
- 'Debug phase' done
- All optics installed
- Cryostat ready!

Current status of NIKA2: detectors

- Already many arrays fabricated, for both bands
- 20 RF lines installed and fully functional
- New electronics board under final development (more compact and less power hungry wrt NIKA1)
- Optical test of the arrays in the final configuration are ongoing

Current status of NIKA2: detectors

- Already many arrays fabricated, for both bands
- 20 RF lines installed and fully functional
- New electronics board under final development (more compact and less power hungry wrt NIKA1)
- Optical test of the arrays in the final configuration are ongoing!

Everything looks very promising! Taking care of final details...

09/2015 Installation at IRAM!

(Perfectly on time...)

Conclusions

- KID have evolved very fast since their proposition in 2003
- In little over 10 years, they have already reached a very good maturity level
- Today, KID represent a viable alternative for many applications looking for large format arrays of cryogenic detectors
- They are 'cheap, rugged and easy to make'
- NIKA and NIKA2 are preminent example of what can be achieved using KID arrays
- So, if they are good for your application, why not going for it?

Thank you!

If you want to read further...

Theses (just a few samples):

- B. Mazin, *Microwave Kinetic Inductance Detectors*
- S. Doyle, Lumped Element Kinetic Inductance Detectors
- P. de Viesser, Quasiparticles dynamics in Aluminum superconducting resonators
- A. D'Addabbo, Applications of KID to astronomy and particle physics

Review papers:

- J. Zmuidzinas, Superconducting Microresonators, Ann Rev Cond Mat Phys (2012)
- J. Baselmans, Kinetic Inductance Detectors, J Low Temp Phys (2012)

NIKA+NIKA2:

- A. Monfardini et al., Latest NIKA Results and the NIKA-2 Project, JLTP 176, 787
- M. Calvo et al., Improved mm-wave photometry for KID, A&A 551, L12
- A. Catalano et al., Introduction to Superconductivity, A&A 569, A9