An "Artificial Retina" Processor for Track Reconstruction Riccardo Cenci

Problem: trigger efficiently hadronic events at very high luminosity (>10³⁴ cm⁻²s⁻¹)

The "Artificial Retina" algorithm

- **Highly-parallel** algorithm inspired to quick detection of edges in mammals visual cortex
- **Continuous response** with limited number of pre-calculated patterns, which allows a coarser grid mapping of parameters
- Reconstruction of charged-particle trajectories (tracks) at LHC collisions frequency with **few** μ**s latency**, which allows to trigger hadronic events

Study for a real-detector application

- Forward spectrometer, pixel silicon tracker with fringe magnetic field
- To be implemented in few tenths of common FPGA's, less than 150 clock cycles per event
- Reconstruction performances equal to offline algorithms

An "Artificial Retina" Processor for Track Reconstruction Riccardo Cenci

First prototype (goal: minimum event rate 1 MHz)

• Simplified tracker with 6 single-coordinate layers (x silicon strips)

• Implemented on Altera Stratix III FPGA using the Tel62 board developed by INFN for NA62

• The system fits on **one crate** (8 boards, 32 FPGA's)

• More than half of the system has been already designed, simulated and it is running on the real board with an event rate larger than 1 MHz

Results shown in the poster have been achieved by *"Retina"*, a 3-year project funded by INFN, Division of technological research experiments (CNS5)

Participants: A. Abba^{4,6}, F. Bedeschi, F. Caponio^{4,6}, R. Cenci^{1,3}, M. Citterio⁴, A. Cusimano^{4,6}, J. Fu⁴, A. Geraci⁵, M. Grizzuti^{4,6}, N. Lusardi^{4,6}, P. Marino^{1,3}, M. J. Morello^{1,3}, N. Neri⁴, D. Ninci^{1,2}, M. Petruzzo^{4,5}, A. Piucci^{1,2}, G. Punzi^{1,2}, L. Ristori⁷, F. Spinella¹, S. Stracka^{1,3}, D. Tonelli⁸, J. Walsh¹ ¹INFN Pisa, ²Università di Pisa, ³Scuola Normale Superiore di Pisa, ⁴INFN Milano, ⁵Università di Milano, ⁶Politecnico di Milano, ⁷Fermilab, ⁸CERN