

The Tunka Radio Extension Radio Detection of Air Showers in Siberia

Frank G. Schröder for the Tunka-Rex Collaboration

Karlsruhe Institute of Technology

Take home message

- Cross-calibration of air-Cherenkov and radio measurements of the same air showers
- Both have similar energy precision: ~ 15%
- 24/7 operation possible due to trigger by new scintillator extension Tunka-Grande

Radio emission of air showers mainly caused by deflection of e⁻ and e⁺ in geomagnetic field.

 (\mathbf{H})

First results

- Sky map of events of first season (2012/2013):
- North-South asymmetry due to dominant geomagnetic effect
- In contrast to air-Cherenkov method, radio more efficient for inclined events

(m/Vµ)

Technical data

- Trigger and DAQ:
- Effective freq. band:
- Antenna type:
- Alignment:
- Array size:
- Approx. cost:
- Event rate:
- by PMTs and scintillators 35-76 MHz SALLA (2 channels) 45° and 135° (like LOFAR) 44 antennas on approx. 3 km² ~ 400 € per antenna
- approx. one event per hour

Radio amplitude at 100 distance from shower axis, normalized for geomagnetic effect vs. air-shower energy obtained from Tunka-133 air-Cherenkov mea-

frank.schroeder@kit.edu

Tunka-Rex Collaboration

Pavel A. Bezyazeekov¹, Nikolai M. Budnev¹, Oleg A. Gress¹, Andreas Haungs², Roman Hiller², Tim Huege², Yulia Kazarina¹, Matthias Kleifges³, Elena E. Korosteleva⁴, Dmitriy Kostunin², Oliver Krömer³, Leonid A. Kuzmichev⁴, Rashid R. Mirgazov¹, Leonid Pankov¹, Vasily V. Prosin⁴, Grigory I. Rubtsov⁵, Vasily Savinov¹, Frank G. Schröder², Ralf Wischnewski⁶, Alexey Zagorodnikov¹

Blind strategy for cross-calibration

- Develop methods for reconstruction of Tunka-Rex radio measurements by cross-calibration to the Tunka-133 air-Cherenkov data of 2012/13
- Test of the precision for energy and composition by comparison with yet blind Tunka-133 data of 2013/14
- Institute of Applied Physics ISU, Irkutsk, Russia
- Institut für Kernphysik, Karlsruhe Institute of Technology (KIT), Germany
- Institut für Prozessdatenverarbeitung und Elektronik, KIT, Germany 3
- Skobeltsyn Institute of Nuclear Physics MSU, Moscow, Russia
- Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia
- DESY, Zeuthen, Germany 6

www.ikp.kit.edu/tunka-rex

www.kit.edu

KIT – University of the State of Baden-Wuerttemberg and National Laboratory of the Helmholtz Association