

An integrated system for the on-line monitoring of particle therapy treatment accuracy

Elisa Fiorina (Universita' di Torino and INFN, TORINO) on behalf of the INSIDE collaboration

Hadrontherapy monitoring

The **Inside** Project

INnovative Solutions for In-beam DosimEtry in Hadrontherapy

Designed to:

- □ be integrated in the gantry
- □ be operated in-beam
- provide an IMMEDIATE feedback on the particle range

In-beam PET heads

[1] Work partly funded by the European Union 7th Framework Program (FP7/ 2007-2013) under Grant Agreement No. 256984 EndoTOFPET-US and supported by a Marie Curie Early Initial Training Network Fellowship of the European Union 7th Framework Program (PITN-GA-2011-289355-PicoSEC-MCNet).

E. Fiorina

Dose Profiler

The **Inside** System Specifications

	IN-BEAM PET HEADS	DOSE PROFILER	
Signal	β+ decay	Prompt secondary particles	
Acquisition phases	In-spill, inter-spill and after-treatment	In-spill	
Position	 heads face to face perpendicular to the beam axis fitted position wrt the isocenter a forward direction b forward direction a forward direction b forward direction b forward direction b forward direction c forward direction 		
Distance from beam isocenter	25 cm about 40 cm		
Output	3D PET image	Emission point distribution	

Bragg Peak depth online check before patient irradiation with the complete treatment session.

MC simulations

Essential for system design, development and operation planning.

Dose Delivery System @		http://www.fluka.org		
Synchrotron Survey	INTEGRAL CHAMBERS	BEAM SIMULATION	PHANTOM/PATIENT SIMULATION	
Giordanengo et al., Rom. Rep. in Phys., Vol. 66(1), 2014 Control of the second	66(1), 2014 En-1	 CNAO beam pipe and nozzle beam space and time structure (from the beam monitoring system) 	 phantom: different materials patient: Computed Tomography 	
		PET SIMULATION	DOSE PROFILER SIMULATION	
		 two-steps approach detector response 	 full¹²C beam simulation detector response 	
E. Fiorina	13 th Pisa Mee	ting on Advanced Detectors, May 26 th 2015	Inste ⁶	

PET simulations (I)

PET simulations (II)

Monoenergetic 2D proton treatment:

- uniform irradiation
- □ 4.5x4.5x0.3cm³ slice @ E=66.34 MeV
- □ 4.50E+10 protons
- □ 59 spill
- □ 7.63E+8 average protons/spill

Simulated isotopes: 86% during treatment, 95% after treatment

PET simulations (III)

ACTIVITY PROFILE ANALYSIS

Monoenergetic 1D proton treatment: a single spot @ E=68.3 MeV 2.E+11 protons

- □ 102 spill
- □ 1.96E+9 average protons/spill

9

Dose profiler simulation (I)

Dose profiler simulations (II)

PHANTOM CASE

Single spot ¹²C beam @ 220 MeV/u

Simulated tracks inside the Dose Profiler

E. Fiorina

13th Pisa Meeting on Advanced Detectors, May 26th 2015

Dose profiler simulations (III)

PET beam test May 2015 @ CNAO(I)

Monoenergetic 1D proton treatments Single spot, 2E+11 protons

Energy [MeV]	68.3	72.03	84.3
spill	102	98	183
average protons/spill	1.96E+9	2.04E+9	1.09E+9

DATA ANALYSIS:

- Online/offline analysis
- For each channel, automated:
 energy window selection
 - time delay calibration
- □ 3D PET image reconstruction
- Profile analysis

p beam

PET beam test May 2015 @ CNAO(II)

PET reconstructed images

E. Fiorina

PET beam test May 2015 @ CNAO (III)

Conclusions & Prospects

The INSIDE Project combines:
β⁺ activity detection: **IN-BEAM PET HEADS**secondary particle tracking: **DOSE PROFILER**to provide 3D real-time monitoring in hadrontherapy

MC simulations:

essential for system design, development and operation **In-beam PET**: two-steps technique reduces the simulation time (70x), validation on real data **Dose Profiler**: secondary particle signal quantification with ¹²C beam

In-beam PET first modules (tested at CNAO, May 2015):

- very satisfactory results
- both in-spill and inter-spill/after treat. PET images

16

adequate coincidence time resolution

The INSIDE system commissioning at CNAO by the early of 2016.

This paper has been supported by Ministero dell'Istruzione, dell'Università e della Ricerca of the Italian government under the program PRIN 2010-2011 project nr. 2010P98A75 and by European Union's Seventh Framework Program for research, technological development and demonstration under grant agreement no 317446 (INFIERI)

Contacts: Maria Giuseppina Bisogni giuseppina.bisogni@pi.infn.it Elisa Fiorina fiorina@to.infn.it