Depleted Argon for Dark Matter Searches

Cristiano Galbiati Princeton University Pisa Meeting 2015 La Biodola

May 26, 2015

cm ²]	10^{-40}		
] ປ	10 ⁻⁴²		
	10 ⁻⁴³		
	10 ⁻⁴⁴		
	10 ⁻⁴⁵	I @14	LHC L TeV
	10 ⁻⁴⁶		
	10 ⁻⁴⁷		
	10 ⁻⁴⁸		
	10 ⁻⁴⁹		
	10⁻⁵⁰	1 10	

cm ²]	10^{-40}		
] ປ	10 ⁻⁴²		
	10 ⁻⁴³		
	10 ⁻⁴⁴		
	10 ⁻⁴⁵	I @14	LHC L TeV
	10 ⁻⁴⁶		
	10 ⁻⁴⁷		
	10 ⁻⁴⁸		
	10 ⁻⁴⁹		
	10⁻⁵⁰	1 10	

cm ²]	10^{-40}		
] ປ	10 ⁻⁴²		
	10 ⁻⁴³		
	10 ⁻⁴⁴		
	10 ⁻⁴⁵	I @14	LHC L TeV
	10 ⁻⁴⁶		
	10 ⁻⁴⁷		
	10 ⁻⁴⁸		
	10 ⁻⁴⁹		
	10⁻⁵⁰	1 10	

What does it take?

- ~500 tonnes xyear exposure
 - 400 tonnesxyear for argon, 300 tonnesxyear for xenon
- By the way, it has to be background free

Elena Aprile, LNGS Beyond 2020 Meeting, April 28, 2015, LNGS XENONT Backgrounds

Source

ER (intrinsic + solar v)

NR from neutrino coherent scattering

Total

S1 in [3, 70] pe, ER discrimination 99.75%, NR acceptance 40%.

ER:

- negligible materials radioactivity
- 0.2 ppt Kr/Xe and 1 microBq/kg
 Rn-222, as in XENON1T
- solar neutrino elastic scattering

NR:

- negligible n-background
- neutrino coherent scattering

Background (ev. / ton / y)
0.27
0.55
0.82

f₉₀

Experiment

LUX [10k kg×day Xe] XENON [7.6k kg×day Xe] DS-50 [1.4k kg×day Ar]

σ [cm ²] @1 TeV/c ²	σ [cm ²] @10 TeV/c
1.1×10-44	1.2×10 -43
1.9×10-44	1.9×10 -43
2.3×10-43	2.1×10-42

Experiment	σ [cm²] @1 TeV/c ²	σ [cm ²] @10 TeV/c
LUX [10k kg×day Xe]	1.1×10-44	1.2×10 -43
XENON [7.6k kg×day Xe]	1.9×10-44	1.9×10 -43
DS-50 [1.4k kg×day Ar]	2.3×10-43	2.1×10 -42
ArDM [1.5 tonne×yr Ar]	8×10-45	7×10-44
DEAP-3600 [3.0 tonne×yr Ar]	5×10-46	5×10-45
XENON-1ton [2] [2.7 tonne×yr Xe]	3×10-46	3×10-45
LZ [1] [15 tonne×yr Xe]	5×10-47	5×10 -46

Experiment	σ [cm²] @1 TeV/c ²	σ [cm ²] @10 TeV/c
LUX [10k kg×day Xe]	1.1×10-44	1.2×10 -43
XENON [7.6k kg×day Xe]	1.9×10-44	1.9×10 -43
DS-50 [1.4k kg×day Ar]	2.3×10-43	2.1×10 -42
ArDM [1.5 tonne×yr Ar]	8×10-45	7×10-44
DEAP-3600 [3.0 tonne×yr Ar]	5×10-46	5×10 ⁻⁴⁵
XENON-1ton [2] [2.7 tonne×yr Xe]	3×10-46	3×10-45
LZ [1] [15 tonne×yr Xe]	5×10-47	5×10-46
DS-20k [100 tonne×yr]	9×10-48	9×10 -47

Experiment	σ [cm²] @1 TeV/c²	σ [cm ²] @10 TeV/c
LUX [10k kg×day Xe]	1.1×10 -44	1.2×10 -43
XENON [7.6k kg×day Xe]	1.9×10-44	1.9×10 -43
DS-50 [1.4k kg×day Ar]	2.3×10-43	2.1×10 -42
ArDM [1.5 tonne×yr Ar]	8×10-45	7×10-44
DEAP-3600 [3.0 tonne×yr Ar]	5×10 ⁻⁴⁶	5×10-45
XENON-1ton [2] [2.7 tonne×yr Xe]	3×10-46	3×10-45
LZ [1] [15 tonne×yr Xe]	5×10 ⁻⁴⁷	5×10-46
DS-20k [100 tonne×yr]	9×10-48	9×10-47
1 Neutrino Event [400 tonne×yr Ar or 300 tonne×yr Xe]	2×10-48	2×10-47

Experiment	σ [cm ²] @1 TeV/c ²	σ [cm ²] @10 TeV/c
LUX [10k kg×day Xe]	1.1×10-44	1.2×10 -43
XENON [7.6k kg×day Xe]	1.9×10-44	1.9×10 -43
DS-50 [1.4k kg×day Ar]	2.3×10-43	2.1×10 -42
ArDM [1.5 tonne×yr Ar]	8×10-45	7×10-44
DEAP-3600 [3.0 tonne×yr Ar]	5×10-46	5×10-45
XENON-1ton [2] [2.7 tonne×yr Xe]	3×10-46	3×10 -45
LZ [1] [15 tonne×yr Xe]	5×10-47	5×10-46
DS-20k [100 tonne×yr]	9×10-48	9×10 -47
1 Neutrino Event [400 tonne×yr Ar or 300 tonne×yr Xe]	2×10-48	2×10 -47
ARGO [1,000 tonne×yr]	9×10-49	9×10 -48

³⁹Ar Rejection

1,422 kg×day (@AAr)

x 300 (³⁹Ar AAr/³⁹Ar UAr)

³⁹Ar Rejection

1,422 kg×day (@AAr)

already achieved

x 300 (³⁹Ar AAr/³⁹Ar UAr)

additional active isotopic depletion

³⁹Ar Rejection

1,422 kg×day (@AAr)

already achieved

higher light yield stronger discrimination present value stat limited

DarkSide-20k and Argo Lol Signatories

D. Franco, A Tonazzo (APC Paris) D. Alton (Augustana) A. Kubankin (Belgorod) K. Keeter, B. Mount (BHSU) A. Devoto, M. Lissia, M. Mascia, S. Palmas (Cagliari) A. Machado, E. Segreto (Campinas) M. Leal, L. Romero, R. Santorelli (CIEMAT) S. Horikawa, K. Nikolics, C. Regenfus, A. Rubbia (ETH) S. Pordes (Fermilab) A. Gola, C. Piemonte (FBK & TIFPA) M. Pallavicini, G. Testera, S. Zavatarelli (Genova) S. Davini (GSSI) E. Hungerford, A. Renshaw (Houston) M. Guan, J. Liu, Y. Ma, C. Yang, W. Zhong (IHEP) M. Misziazek, K. Pelczar, M. Woicik, G. Zuzel (Jagiellonian) K. Fomenko, A. Sotnikov, O. Smirnov (JINR) M. Skorokhvatov (Kurchatov) N. Canci, F. Gabriele, G. Bonfini, A. Razeto, N. Rossi, F. Villante (LNGS) S. De Cecco, C. Giganti (LPNHE Paris)

D. D'Angelo, G. Ranucci (Milano) A. Chepurnov, G. Girenok, I. Gribov, M. Gromov, I. Zilcov (MSU)

H. Back (PNNL)

M. Ghioni, A. Gulinatti, L. Pellegrini, I. Rech, A. Tosi, F. Zappa (PoliMi)

C. Galbiati, A. Goretti, A. Ianni,

P. Meyers, M. Wada (Princeton)

C. Dionisi, S. Giagu, M. Rescigno (Roma 1) S. Bussino, S. Mari (Roma 3)

A. Derbin, V. Muratova, D. Semenov,

E. Unzhakov (St. Petersburg)

C. Jollet, A. Meregaglia (Strasbourg)

C.J. Martoff, J. Napolitano, J. Wilhelmi (Temple) E. Pantic (UC Davis)

Y. Suvorov, H. Wang (UCLA)

A. Pocar (UMass Amherst)

F. Ortica, A. Romani (Perugia)

S. Catalanotti, A. Cocco, G. Covone,

G. Fiorillo, B. Rossi (Napoli)

J. Maricic, R. Milincic, B. Reinhold (Hawaii) P. Cavalcante (Virginia Tech)

20-	15	16	17	18	19	20	21	22
DS-20k								
ARGO								

What are the backgrounds for large scale, high mass dark matter searches?

Elastic scatters of pp solar neutrinos

Radioactive noble gases (³⁹Ar)

Elastic Scatters of pp Solar Neutrinos on Electrons

- background events @neutrino floor
 - No problem due to β/γ rejection better than $1 \div 1.6 \times 10^7$
- 20 events/tonnexyr in 0-10 keV_{ee} ROI for xenon means 6,000 background events @neutrino floor
 - Irreducible background due to rejection limited to 1÷200

• 200 events/tonnexyr in 30-200 keV_{nr} ROI for argon means 80,000

Based on what we know today, can a depleted argon experiment be background free at the scale of 400 tonnes×yr?

- *pp* neutrino-electron scattering Not a concern thanks to pulse shape discrimination
- ²¹⁴Pb from ²²²Rn and ⁸⁵Kr Not a concern thanks to pulse shape discrimination
- ³⁹Ar

Discrimination proven so far on exposure of 1 tonnexyr UAr equivalent No deviations from statistical behavior of discrimination Current $1 \div 1.6 \times 10^7$ rejection limited by statistics SiPM should allow to increase light yield by $\times 1.5$, which projects to more than 3 additional orders of magnitude in discrimination at the same threshold Further isotopic depletion of ³⁹Ar available if required

Yes

DarkSide Depleted Argon Sources

- Urania \bullet
- Aria
 - Giant cryogenic distillation column in Seruci, Sardinia
 - vapor pressure difference ³⁹Ar/⁴⁰Ar

expansion of Colorado UAr extraction facility to reach 100 kg/day

Gas purification AND active isotopic depletion exploiting finite

DarkSide Depleted Argon Verification

- ~1 kg argon detector in a shallow underground location at Seruci for initial assessment ³⁹Ar sensitivity: 1 mBq/kg Factor 10³ depletion (2-3 times better than DS-50)
- ArDM for high-sensitivity tests of tonne-scale batches ³⁹Ar sensitivity: 10 µBq/kg Factor 10⁵ depletion

- Background-free exposure of 1,000 tonnexyr
- Sensitivity 9×10⁻⁴⁹ cm² @1 TeV/cm² Covers space throughout neutrino floor
- Permits precision measurements of solar neutrinos TPC affords very sharp definition of fiducial volume Argon ten times brighter than organic liquid scintillator Statistical precision 2% for ⁷Be, 10% for *pep*, and 15% for CNO neutrinos Systematics under study Cosmogenics under control
- 300 tonne detector \bullet Requires Borexino-style shield for solar neutrinos study

Argo

7Li(p,n) on thin LiF target to generate low energy, pulsed, monochromatic neutron beam

Triple coincidence between pulse proton beam, LAr TPC, liquid scintillator detectors for detection of scattered neutrons

Directional Dark Matter Test @Napoli • Participating groups: Naples, Roma 1, APC-IN2P3, Princeton, Temple, UCLA

- Coordinator: Giuliana Fiorillo (Napoli)
- experiment under way
- Start of operations with LAr TPC in October 2015
- Will provide facility available for calibration of other detectors with monochromatic, pulsed neutron beam

Refurbishment of Tandem accelerator to create dedicated proton line for

• Permanent array of liquid scintillator neutron coincidence counters planned

Conclusions

- capability
- Letter of Intent submitted to LNGS April 27 2015
- Background-free requirement key element: DarkSide-20k and Argo have unique capabilities

• DS-20k most ambitious program proposed, goes more than $\times 5$ beyond LZ

• Argo to cover entire parameter space through neutrino floor and to enable precision measurements of solar neutrinos significantly beyond Borexino

 Exploration of possible directional signal with dedicated experiment at Naples. Unique possibility of conjugating directionality with zero background strategy

The End