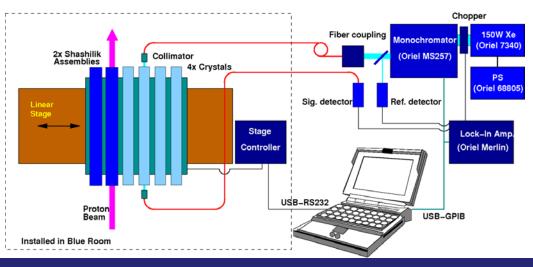
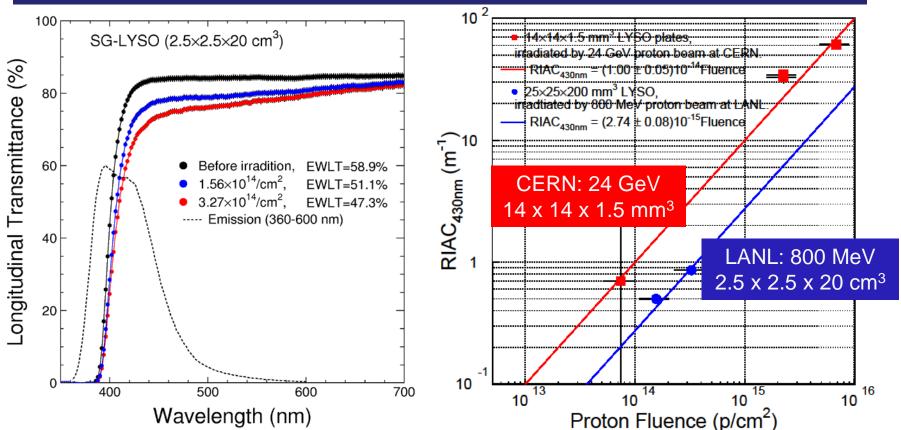

Radiation Damage Induced by 800 MeV Protons in Fast Crystal Scintillators



Fan Yang, Liyuan Zhang and Ren-Yuan Zhu

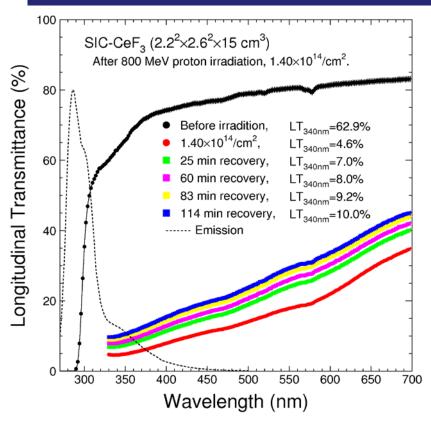
Crystal Laboratory, HEP, California Institute of Technology, Pasadena, CA 91125, USA
Jon Kapustinsky, Ron Nelson and Zhehui Wang

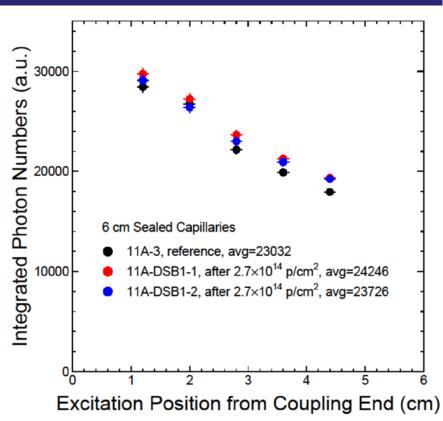
Los Alamos National Laboratory, Los Alamos, NM 87545, USA


- ➤ Six samples were loaded on a remote controlled linear stage: one LYSO/W/Y-11 Shashlik cell, one box containing four 6 cm long sealed capillaries and three Y-11 WLS fibers and four large size crystals (LYSO, LFS, BGO and CeF₃).
- An optical fiber and lock-in amplifier based spectrophotometer used to measure longitudinal transmittance (LT) of crystal samples before, during and after irradiations.
- **>** Because of a power blackout, only the box, LYSO and CeF₃ were irradiated with a fluence of 2.7, 3.3 and 1.4×10^{14} p/cm² respectively.

Radiation Damage in Fast Crystal Scintillators Induced by 800 MeV Protons

- > The LYSO of $2.5 \times 2.5 \times 20$ cm³ was irradiated to 3.3×10^{14} p/cm².
- ➤ The emission weighted radiation induced absorption (EWRIAC) is about 1 m⁻¹, indicating excellent radiation hardness of LYSO against charged hadrons.
- > The result is consistent within a factor of 3 with $14 \times 14 \times 1.5$ mm³ LYSO plates irradiated up to 7×10^{15} p/cm² by 24 GeV protons at CERN.





Radiation Damage in Fast Crystal Scintillators Induced by 800 MeV Protons

- An order of magnitude larger absorption was observed in the CeF_3 of $2.2^2 \times 2.6^2 \times 15$ cm³, after 1.4×10^{14} p/cm² irradiation, partly due to its poor quality since it was grown 20 years ago. More test with optimized samples is needed.
- Two quartz capillaries filled with DSB based liquid scintillator show consistent emission spectra, measured 76 days after an irradiation of 2.7 x 10¹⁴ p/cm² as compared to un-irradiated one.

