Real time tracking with a silicon telescope prototype using the "artificial retina" algorithm

Marco Petruzzo Università degli Studi and INFN, Milano

Abstract: we present the first prototype of a silicon tracker using the "artificial retina" for fast track finding. The algorithm, based on extensive parallelization, is implemented on commercial FPGAs and allows to reconstruct real time tracks with offline-like quality and <1µs latencies. The modularity permits to design a system able to operate at the 40MHz LHC crossing rate.

Retina Algorithm

- The "artificial retina" algorithm^[1] is inspired from the neurobiological mechanism of recognition of edges in mammals visual cortex
- It is higly parallelized and a hardware implementation is possible using commercial FPGAs^[2]
- A strongly pipelined architecture allows sub-us latencies
- A grid of cellular units covers the space of track parameters
- Each cell is associated with a set of **track receptors** in the tracking plane

• The cells, in parallel, evaluate and sum the responses to the clusters → "Weight function"

Receptor response to cluster

Local maxima are found

• **Track parameters** are separately obtained via interpolation of the Weight function along the grid axes

Interpolation of the Weight function

Excitation of the (i,j)-cellular unit

$\Delta =$ grid step

• The interpolation provides offline-like quality tracks even with a coarse grid

Silicon telescope

- 8 single-sided silicon strip sensors
- STM OB2 sensor: ~10x10cm² active area 512 strips 183µm pitch 500µm thickness

MAMBA board - DAQ+Retina

- Custom board designed and produced in Milano
- Based on Xilinx Kintex 7 FPGA
- 8 Beetle Chips (2 sensors) readout
 - \rightarrow 4 boards required
- Readout rate limited at 1.1MHz by Beetle chips maximum trigger rate On-board Retina algorithm

"Artificial retina" architecture

