Real time tracking with a silicon telescope prototype using the “artificial retina” algorithm

Marco Petruzzo Università degli Studi and INFN, Milano

Overview:

- The first prototype of a tracking system with “artificial retina” is presented
- Highly parallelized and pipelined architecture, implemented on commercial FPGAs (Xilinx Kintex 7)
- Real time track reconstruction with offline-like quality and sub-μs latencies
- Modular system: can be designed to work at 40MHz LHC rate

Retina Algorithm:

- Inspired from neurobiological mechanism of edge recognition in visual cortex
- A pool of “cellular units” compares the hits from telescope different track hypotheses in parallel

![Cellular units covering the tracking region](image)

Higher “Weight function” for better matching tracks

Best matching track

Tracks are identified by local maxima of the “Weight function”
- Custom DAQ board based on Xilinx Kintex 7
 FPGA → MAMBA (“Most Advanced Multi Beetle Acquisition”) board
- ADC, Zero suppression and hits clustering
- **On-board Retina Algorithm**
- MAMBA board and telescope designed and produced in Milano

- 2D tracking telescope
- 8 single-sided silicon strip sensors:
 - \(~10\times10\text{cm}^2\) active area
 - \(183\mu\text{m}\) pitch,
 - \(500\mu\text{m}\) thickness

Results and future plans

- Artificial retina algorithm implemented on custom DAQ+Retina boards, equipped with commercial FPGAs (Xilinx Kintex 7)
- Retina architecture successfully tested up to 40 MHz track rate with FPGA simulation
- Real time track reconstruction with offline-like quality and sub-µs latencies
- Full prototype functionalities to be tested on beam this summer

RETINA is a 3 year term INFN-CSN5 funded project

Co-authors: A. Abba\(^1\), F. Bedeschi\(^2\), F. Caponio\(^1\), R. Cenci\(^1\), M. Citterio\(^1\), S. Coelli\(^1\), J. Fu\(^1\), A. Geraci\(^1\), M. Grizzuti\(^1\), N. Lusardi\(^1\), P. Marino\(^2\), M. Monti\(^2\), M. J. Morello\(^2\), N. Neri\(^1\), D. Ninci\(^2\), A. Piucci\(^2\), G. Punzi\(^2\), L. Ristori\(^2,3\), F. Spinella\(^2\), S. Stracka\(^2\), D. Tonelli\(^2\), J. Walsh\(^2\)

\(^1\)INFN-Milano and Politecnico di Milano, \(^2\)INFN-Pisa, Università di Pisa and Scuola Normale Superiore, \(^3\)Fermilab, \(^4\)CERN