13th PISA Meeting on Advanced Detectors

Elba, 25-30.5.2015

Depleted CMOS Pixels - for LHC – pp – Experiments

Norbert Wermes University of Bonn

(representing ATLAS CMOS Pixel Collaboration)

N. Wermes, Elba 2015

Depleted CMOS Pixels

... why and how

... technologies

... results from prototyping R&D

N. Wermes, Elba 2015

From LHC - HYBRID pixels \rightarrow depleted CMOS pixels

- Standard HYBRID pixels
 - various sensors: planar-Si, 3D-Si, diamond
 - mixed signal R/O chip (FE-I3, FE-I4, ROC ...)

- Monolithic Active Pixel Sensors
 - MAPS using CMOS with Q-collection in epilayer (largely by <u>diffusion</u> → recent advances)

 $d \sim \sqrt{\rho \cdot V}$

<u>Depleted</u> DMAPS using HR substrate or
 HV process to create depletion region:

 currently also: "smart" pixel matrix bonded to FE-chip: CCPD

	BX time	Particle Rate	NIEL Fluence	lon. Dose
	ns	kHz/mm²	n _{eq} /cm² per lifetime*	Mrad per lifetime*
LHC (10 ³⁴ cm ⁻² s ⁻¹)	25	1000	2×10 ¹⁵	79
HL-LHC (10 ³⁵ cm ⁻² s ⁻¹)	25	10000	2×10 ¹⁶	> 500
LHC Heavy lons (6×10 ²⁷ cm ⁻² s ⁻¹)	20.000	10	>1013	0.7
RHIC (8×10 ²⁷ cm ⁻² s ⁻¹)	110	3.8	few 10 ¹²	0.2
SuperKEKB (10 ³⁵ cm ⁻² s ⁻¹)	2	400	~3 x 10 ¹²	10
ILC (10 ³⁴ cm ⁻² s ⁻¹)	350	250	1012	0.4

assumed lifetimes: LHC, HL-LHC: 7 years ILC: 10 years others: 5 years

	BX time	Particle Rate	NIEL Fluence	lon. Dose
	ns	kHz/mm²	n _{eq} /cm² per lifetime*	Mrad per lifetime*
LHC (10 ³⁴ cm ⁻² s ⁻¹)	25	1000	2×10 ¹⁵	79
HL-LHC (10 ³⁵ cm ⁻² s ⁻¹)	25	10000	2×10 ¹⁶	> 500
tHC Heavy lons (6×10 ²⁷ cm ⁻² s ⁻¹)	20.000	10	>10 ¹³	0.7
RHIC (8×10 ²⁷ cm ⁻² s ⁻¹)	110	3.8	few 10 ¹²	0.2
SuperKEKB (10 ³⁵ cm ⁻² s ⁻¹)	2	400	~3 x 10 ¹²	10
ILC (10 ³⁴ cm ⁻² s ⁻¹)	350	250	1012	0.4
Monolithic Pixels	ower rates ower radiatio smaller pixels less material better resolut	DEPFET: Bell MAPS: STAR and f ALICE	le II @RHIC future E ITS	assumed lifetimes: LHC, HL-LHC: 7 years ILC: 10 years others: 5 years

N. Wermes, Elba 2015

focus in this talk (CMOS pixels for LHC-pp)

	BX time	Particle Rate	NIEL Fluence	lon. Dose
	ns	kHz/mm²	n _{eq} /cm² per Nfetime*	Mrad per lifetime*
LHC (10 ³⁴ cm ⁻² s ⁻¹)	25	1000	2×10 ¹⁵	79
HL-LHC (10 ³⁵ cm ⁻² s ⁻¹)	25	10000	2×10 ¹⁶	> 500
LHC Heavy lons (6×10 ²⁷ cm ⁻² s ⁻¹)	20.000	10	>10 ¹³	0.7
RHIC (8×10 ²⁷ cm ⁻² s ⁻¹)	110	3.8	few 10 ¹²	0.2
SuperKEKB (10 ³⁵ cm ⁻² s ⁻¹)	2	400	~3 x 10 ¹²	10
ILC (10 ³⁴ cm ⁻² s ⁻¹)	350	250	1012	0.4
Monolithic Pixels	ower rates ower radiatic smaller pixels ess material petter resolut	on DEPFET: Bel MAPS: STAR and f ALICI	le II @RHIC future E ITS	assumed lifetimes: LHC, HL-LHC: 7 years ILC: 10 years others: 5 years

TCAD simulations: resistivity – voltage – fill factor

Substrate: $10 \Omega cm - 2k\Omega cm$ Nwell: 1V - 20 VPwell: 0V

from Tomasz Hemperek

TCAD simulations: resistivity – voltage – fill factor

low resistivity

Substrate: $10 \Omega cm - 2k\Omega cm$ Nwell: 1V - 20 VPwell: 0V

universität**bonn**

from Tomasz Hemperek

high resistivity

N. Wermes, Elba_2015

TCAD simulations: resistivity – voltage – fill factor

Substrate: $10 \Omega cm - 2k\Omega cm$ Nwell: 1V - 20 VPwell: 0V

from Tomasz Hemperek

low resistivity

HR plus (high) voltage

Fill Factor influence: here at $10^{15} n_{eq}/cm^2$

Electron Velocity

Charge_Collection

fraction of collected charge in first 10ns

substrate resistivity [Ωcm]	Bias [V]	Fill Factor [%]
10	1	15
10	20	15
2k	1	15
2k	20	15
2k	20	75

from Tomasz Hemperek

Enabling technologies

"High" Voltage add-ons
 add-ons
 Special processing add-ons (from automotive and power management applications) increase the voltage handling capability and create a depletion layer in a well's pn-junction of o(10-15 μm).

"High" Resistive 8" hi/mid resistivity silicon wafers accepted/qualified by the foundry. WafersCreate depletion layer due the high resistivity.

Technology features
(130-180 nm)Radiation hard processes with multiple nested wells.
Foundry must accept some process/DRC changes in
order to optimize the design for HEP.

from: www.xfab.com

BacksideWafer thinning from backside and backside implantProcessingto fabricate a backside contact after CMOS processing.

□ driven by the need/hope for

- low cost large area detectors ... more pixel layers in trackers commercial
- less material ... ? ... possibly
- smaller pixels ... may be ... may be not
- less power ... ? ... not clear

□ facing the challenges of HL-LHC

<u>inner layers (<6 cm)</u>

- high rates
 10 MHz/mm²
- radiation > 1 Grad TID

2 x 10¹⁶ n_{eq}/cm²

outer layers (>25 cm) 1 MHz/mm²

 10^{11} Mm^2 50 Mrad $10^{15} \text{ n}_{eq}/\text{cm}^2$

note: at > $10^{15} n_{eq}$ /cm² trapping becomes the dominant radiation effect

□ driven by the need/hope for

- low cost large area detectors ... more pixel layers in trackers commercial
- less material ... ? ... possibly
- smaller pixels ... may be ... may be not
- less power ... ? ... not clear

□ facing the challenges of HL-LHC

inner layers (<6 cm)

- high rates 10 MHz/mm²
- radiation > 1 Grad TID

2 x 10¹⁶ n_{eq}/cm²

outer layers (>25 cm)

1 MHz/mm² 50 Mrad 10¹⁵ n_{eq}/cm²

note: at > $10^{15} n_{eq}/cm^2$ trapping becomes the dominant radiation effect

goal: some (40 – 80 μ m) depletion depth for ...

- a reasonably large signal ~4000 e-
- fast charge collection (< 25ns "in-time" efficient)
- not too large a travel distance to avoid trapping (rad hardness)

HV - CMOS

$$d \sim \sqrt{\rho \cdot V}$$

I. Peric et al.

Nucl.Instrum.Meth. A582 (2007) 876-885 Nucl.Instrum.Meth. A765 (2014) 172-176

- AMS 350 nm and 180 nm HV process (p-bulk) ... 60-100 V
- deep n-well to put nMOS (in extra p-well) and pMOS (limitation)
- \succ ~10 15 μ m depletion depth \rightarrow 1-2 ke signal
- \blacktriangleright various pixel sizes (~20 x 20 to 50 x 125 μ m²)
- can also replace "sensor" (amplified signal) in a "hybrid pixel" bonding (bump, glue, other...) to FE-chip => CCPD

(see also Posters by Ivan Peric and by Heinz Pernegger)

Havranek, Hemperek, Krüger et al. JINST 10 (2015) 02, P02013

- (D)MAPS like configuration but w/ depleted bulk
- small collection node
- long drift path
- => smaller C, more trapping
- deep n and deep p wells
- large collection node
- short drift path
- => larger C, less trapping

- FD-SOI
- OKI/LAPIS/KEK Y. Arai et al. (talk by T. Miyoshi)
- issues
 - back gate effect
 - radiation issues due to BOX
- cures invented in recent years
- but not suited for LHC pp

N. Wermes, Elba_2015

- FD-SOI
- OKI/LAPIS/KEK Y. Arai et al. (talk by T. Miyoshi)
- issues
 - back gate effect
 - radiation issues due to BOX
- cures invented in recent years
- but not suited for LHC pp

N. Wermes, Elba_2015

- FD-SOI
- OKI/LAPIS/KEK Y. Arai et al. (talk by T. Miyoshi)
- issues
 - back gate effect
 - radiation issues due to BOX
- cures invented in recent years
- but not suited for LHC pp
- HV-SOI (thick film)
- Hemperek, Kishishita, Krüger, NW doi:10.1016/j.nima.2015.02.052
- a promising alternative
- doped, non-depleted P- and N-wells prevent back gate effect and increase the radiation tolerance

The input capacitance to the CSA is crucial ...

- noise (ENC ~ C_{in}) increases with the input capacitance
- **speed** also depends on C_{in} => the smaller the better
- for active CMOS pixels there are additional capacitance contributions (H. Krüger)
 - C between deep N-well and P-well is dominant
 - C_{in} does not scale (down) with area

- hybrid planar pixels (e.g. ATLAS IBL, 50×250×200 μm³): C_{in} = 109 fF (Havranek et al, NIMA 714 (2013) 83-89
- CMOS pixel extrapolation: C_{in} ≈ 200 fF

N. Wermes, Elba_2015

Prototype results

bonded to FE-I4 pixel chip (CCPD) and stand alone (for DMAPS performance characterization)

- HV CMOS (see also Posters by Ivan Peric and by Heinz Pernegger)
- HR CMOS (see also Poster by Tetsuishi Kishishita)
- **SOI CMOS** (see also Poster by Heinz Pernegger)

AMS 180 nm (bonded to FE-I4)

some encouraging results

- capacitive coupling seems to work in principle, whether it is competitive in terms of reliability and price is unclear
- chips stand TIDs up to 1 Grad
- proton irradiation 10¹⁵ n_{eq}/cm² performed
- efficiency (time integrated): 99% -> 96%

Sr90 at 1GRad (Pixel 20x1, HV=-60V)

Constant 448.1±4.148

 1462 ± 28.45

 750.6 ± 13.35

30000 Charge [e]

MPV

1462 e- (bias = 60 V)

after 1 Grad

20000

25000

Sr-90

15000

Sigma

- in-time efficiency not yet met (τ_{rise}~100 ns)
- signal ~1500 e ; SNR ~ 25

version 4

5000

10000

Uno 450

400

350

300

250

200

150

100

50 00

The only CMOS sensor which has seen >> 10¹⁵ neutrons / cm² (up to 2 x 10¹⁶ n/cm², i.e. HL-LHC)

see also poster by Heinz Pernegger Intime signal fraction <u>increases</u> with irradiation, probably due to acceptor removal and larger fraction of charge collected by drift **also depletion depth** increases to ~20 μm @ -80V

HR-CMOS: LFoundry and ESPROS prototypes

LF: Electronics inside collection well

- □ Large fill factor for high CCE and rad-hardness
- □ Full CMOS, isolation via deep p-well (PSUB)
- **D** HR substrate (2 k Ω cm), p bulk
- 150 nm process
- Bonn, CPPM, Karlsruhe

ESPROS: Electronics outside collection well

- Small fill factor, no competing wells
- Full CMOS, isolation via deep n- and p-well
- HR substrate >2kΩ cm, n bulk
- Backside thinning and implant: default option
- 150 nm

Bonn, Prague

HR-CMOS: LFoundry and ESPROS prototypes

LF: Electronics inside collection well

- □ Large fill factor for high CCE and rad-hardness
- □ Full CMOS, isolation via deep p-well (PSUB)
- **Π** HR substrate (2 k Ω cm), p bulk
- 150 nm process
- Bonn, CPPM, Karlsruhe

ESPROS: Electronics outside collection well

- Small fill factor, no competing wells
- Full CMOS, isolation via deep n- and p-well
- HR substrate >2kΩ cm, n bulk
- Backside thinning and implant: default option
- 150 nm

Bonn, Prague

HR-CMOS: LFoundry ... preamp characterizations

Version A

Bias: 110V (4nA) Pixel: CSA ELT Source: ⁵⁵Fe

Version B

Bias: 20V (39nA) Pixel: HV connection Diode, CSA ELT, PSUB everywhere Source: ⁵⁵Fe

Noise and gain agree reasonably with simulations! x-talk less for version B than A, but < 3% ! (CPPM)

N. Wermes, Elba_2015

HR-CMOS: Lfoundry ... charge spectra 3.2 GeV electronsuniversitätbonn

Version A

Bias: 110V (4nA) Pixel: CSA ELT Source: 55Fe

Version B

Bias: 20V (39nA) Pixel: HV connection Diode, CSA ELT, PSUB exerywhere Source: 55Fe

N. Wermes, Elba 2015

test beam @ ELSA/Bonn

fraction of "in-time (25 ns)" hits

- 190 e threshold: 79%
- 2600 e threshold: 91%

next: performance

- w/ thinned sensor (300 μm)
- backside implant
- irradiated

HV-SOI: test chips XTB01 and XTB02

XFAB 180 nm: Electronics outside collection well

- Small charge collection well
- Full CMOS, no backgate effect due to isolation via deep p-well (non-depleted) between CMOS layer and BOX
- HV technology + MR substrate (100 Ωcm), p bulk
- 3 T readout

Design: Bonn Testing: Bonn, CERN

dedicated structures to test the technology further (leakage, break down voltage, etc.)

see also poster by Heinz Pernegger

N. Wermes, Elba_2015

XFAB SOI XTB01 prototype chip: first irradiation tests

Hemperek, Kishishita, Krüger, NW arxiv 1412.3973, accepted NIM A

PMOS shift ~100 mV after 1 Grad

XBT01 in test beam - 50x50µm² pixel

Depletion depth $\approx 31\mu m$ Calculated depth = $36\mu m$ (@100 $\Omega cm, -45V$)

observation:

charge collected from high-field (fast drift) and low field (slow diffusion) regions

- There is a large momentum in R&D for CMOS active pixels as an attractive direction for LHC experiments, even for LHC-pp.
- ... outer layers ... cost saving ... less radiation
- ... inner layers ... small pixel sizes ... position decoding
- R&D profits from micro electronics process and technology variations and its rapid progress.

BACKUP

- complex signal processing already in pixel cells possible
 - zero suppression
 - temporary storage of hits during L1 latency
- \Box radiation hardness to >10¹⁵ n_{eq}/cm²
- □ high rate capability (~MHz/mm²)
- \Box spatial resolution ~ 10 15 μ m

CON

... but also

- □ relatively large material budget: **~3% X**₀ per layer (1% X₀ @ ALICE)
 - sensor + chip + flex kapton + passive components
 - support, cooling (-10°C operation), services
- complex and laborious module production
 - bump-bonding / flip-chip
 - many production steps
 - expensive

ATLAS DEMONSTRATOR Working Group

- **goal:** develop a **cm² sized CMOS pixel module**
 - at first: bondable to a FE-I4 R/O chip (option
- specs

Fig. 1: Alignment of demonstrator to FE-I4 chip

- radiation tolerant to 50 Mrad (TID), 10¹⁵ /cm² (NIEL)
- > 95% in-time (<25 ns) efficiency after irradiation</p>
- < 20 μ A power per pixel
- bondable via bumps or glue to FE-I4
- an area read out through the pixel chip (bonded to FE-I4)
- an area read out standalone -> to characterize CMOS part
- a passive area -> to compare to standard hybrid pixels

Rate and radiation challenges at the innermost pixel layers

		Hybrid Pixels			
			Derticle Dete		
		ns	kHz/mm ²	n _{eq} /cm ² per lifetime*	Mrad per lifetime*
			K	·	
	LHC (10 ³⁴ cm ⁻² s ⁻¹)	25	1000	2×10 ¹⁵	79
	HL-LHC $(10^{35} \text{ cm}^2 \text{s}^{-1})$	25	10000	2×10 ¹⁶	> 500
/	thc Heavy lons (6×10 ²⁷ cm ⁻² s ⁻¹)	20.000	10	>1013	0.7
	RHIC (8×10 ²⁷ cm ⁻² s ⁻¹)	110	3.8	few 10 ¹²	0.2
	SuperKEKB (10 ³⁵ cm ⁻² s ⁻¹)	2	400	~3 x 10 ¹²	10
	ILC (10 ³⁴ cm ⁻² s ⁻¹)	350	250	1012	0.4
	1 Monolithic Pixels	lower rates lower radiati smaller pixels less material better resolu	on MAPS: STAR and f ALICI	le II @RHIC I future I E ITS 0	assumed lifetimes: -HC, HL-LHC: 7 years LC: 10 years others: 5 years

N. Wermes, Elba 2015

Structure of CCPD_LF

- □ IV curves (Version A)
 - 1.8V on collection well negative high voltage on "Back bias"

Breakdown = -114V

Structure of CCPDLF

□ IV curves (Version B)

positive high voltage on collection well, "HV" HV and electronics are coupled with C

High voltage was applied without breaking the capacitor

Wednesday, April 22, 2015

10

20

Aix*Marseill

CPPM CCPD_LF tests results

- 1. Bias Generator functioning :
- The Bias cell is composed of 11 6-bit DACs and generates all the bias for the pixels.
- Simulations and tests of the DACs give similar results:
 - Internal voltage reference:

1,202V in test / 1,134V in simulation

• Example with the DAC of WGT bias:

WGT customizes the weight (amplitude) of the pixel output.

42

Pixel output amplitudeas a function of global DAC (WGT) setting.

WGT code

40

50

2. Time Walk of CCPD_LF version A :

- The Time Walk is presented here as the delay between the comparator responses of a small signal and a huge signal.
- **Measurements with the Injection** (0,13V and 1,6V at BL=0,75V and TH=0,8V):

	Pixel type	Time Walk
Pixel<20,52>	FB L=0,9µ	~57ns
Pixel<12,52>	FB L=1,5µ	~56ns
Pixel<4,52>	FB ELT	~53ns

A schematic simulation with a parasitic circuit (L,R and C) for the path of the Injection gives ~57ns. Note : The TimeWalk measured/simulated with the Injection is high due to the parasitic elements on Injection signal. So the TimeWalk should be reduced with "real" charge (i.e. with a source).

CCPD_LF tests results

3. CrossTalk measurements with the Injection:

- The CrossTalk is measured on a sub-matrix of 3x3 pixels. The pixel in the middle is the only one which accepts the Injection.
- Measurements for version A :

for version B :

43

Aix*Marseille

- a) CrossTalk is seen only between pixels which belong to the same group of 6-pixels.
- b) For ver B : The CrossTalk is MAINLY between the 3 pixels connected to the same FEI4-plate

For ver A : The CrossTalk appears on the 6 pixels.

c) The value of the cross-talk is small (only a few percent relative to the amplitude of the injected pixel in the middle).

CPPM

ATLAS DEMONSTRATOR Working Group

One can think of different realisations for the Inner Tracker Upgrade

fully monolithic providing the complete
 R/O architecture on-chip (FE-I3 or FE-I4 like)

Diode + Amp + Digital

N. Wermes, Elba_2015

ESPROS prototypes: test chips EPCB01 and EPCB02

- 150nm CMOS, 6 metal layers
- deep p-well, isolated full CMOS
- substrate: n-type bulk (> 2 kΩ cm)
- bias voltage up to 20V
- 50µm thin + p-implant (backside)
- 6 pixel matrices
- pixel size: 40 × 40µm²
- ~50 μm depletion depth

main goal: characterization of designs & technology

Matrix version	Biasing & coupling	Analog FE
V1	Resistor + AC	Continuous
V2	Diode + AC	Continuous
V3	Direct + DC	Continuous
V4	Direct + DC	Switched
V5	Diode + AC	Switched
V6	Resistor + AC	Switched

Design & testing: Bonn, Prague

FPCB01

