

FRONTIER DETECTORS FOR FRONTIER PHYSICS 13th Pisa Meeting on Advanced Detectors

24-30 May 2015 - La Biodola, Isola d'Elba (Italy)

R&D on High Field Magnets for Accelerators at Fermilab

Alexander Zlobin (Program Leader), <u>Emanuela Barzi</u> FERMI NATIONAL ACCELERATOR LABORATORY, US

The Past vs. the Future

- The most recent P5 strategic plan for U.S. High Energy Physics (HEP) endorses a continued world leadership role in superconducting magnet technology for future very high-energy p-p colliders, focusing on increasing performance and decreasing costs.
- This includes 10 to 15 T <u>Nb₃Sn</u> accelerator magnets for LHC upgrades and a future 100 TeV scale *pp* collider.
- The ultimate goal is developing magnet technologies for accelerators above 20 T based on both High Temperature Superconductors (HTS) and Low Temperature Superconductors (LTS).
- This program is intended to be conducted in close collaboration with U.S. and International labs, Universities and Industry.

FNAL High Field Magnet Program Mission

- * Development of advanced SC high-field magnets, materials and technologies for particle accelerators is one of Fermilab's core competencies
 - The program supported the development of magnet design and analysis methods and tools, fabrication and test infrastructure, instrumentation, and provided a platform for training of young magnet scientists and engineers
- * During the past 15 years the FNAL HFM program demonstrated the first series of 10-12 T Nb₃Sn accelerator-quality dipoles and quadrupoles, and Nb₃Sn technology scale up, forming a strong foundation for the future LHC luminosity upgrades.

Mission of Superconducting R&D

The Mission of the Superconductor R&D is to understand and improve scientific and engineering aspects of superconducting strands and cables for accelerator magnets. A most pressing goal of this program now is to reach production level for the best possible Nb₃Sn conductor for the 15 T Dipoles and HTS for the 5 T inserts.

Milestones

- The development with industry of Nb₃Sn superconductors that solved the magnet instability problem and are now adopted by CERN and by the LHC Accelerator Research Program.
- The development with Japanese colleagues of a Nb₃Al cable that established the use of this conductor in magnets for the first time.
- The development of an YBCO solenoid that produced a record field at FNAL of 21.5 Tesla.
- The development of a unique 14 T/16 Tesla accelerator cable test facility with ~30,000 Ampere current.
- Since 1998, the Superconducting R&D lab has served as platform for 34 graduate students in physics and engineering for hands-on training during summer internships or Masters and PhD theses.

Superconducting R&D Lab

Four magnetic cryostats with up to 15T/17 T background field, and with cold apertures between 64-mm and 147 mm are connected to new vent and vacuum systems.

Is located in IB3-A, a ~6000 square feet addition to Technical Division's IB3 that was built in 2010 with ARRA funds.

DVERILAL A

Each system has its own DAQ crate and power supplies up to 2400 A. Variable Temperature Inserts allow measurements between 1.5 K and 60 K.

Five ovens up to 1250°C for heat treatment in

Superconducting Materials

Strands

Nb₃Al

Bi-2212

Nb₃Sn

Rutherford-type Cables

Superconductor R&D programs

- Nb₃Sn strand and cable
 - Internal tin (within the U.S.
 Conductor Development
 Program and at FNAL)
 - Powder-in-tube (NED, EU)
 - Nb₃Sn Rutherford-type cable development
- HTS conductor and cable
 - Bi-2212 R&D (U.S.)
 - YBCO (EU)
- Objective: improve J_e and other parameters for accelerator magnets

Bi2212 PIT strand, Oxford SC Technologies

Magnet Design Choice from VLHC Studies

• Coil design:

- cos-theta
- block-type
- common coil
- Technology: W&R, R&W
- Mechanical structure:
 - with and w/o collar
 - Stainless Steel or Al shell
 - stress management
- Field range: 10-13.8 T
 - 13.8 T record since 2008
- Based on data, FNAL decided to focus on the cos-theta (shell-type) design w/o collar

D20 (LBNL), **13.4 T**, 1997

13.8 T, 2008

11 T Magnet R&D

Magnet design – Fabrication - Test - Analysis

11 T Magnet Test Results

- Recent progress in R&D of 11 T Dipoles for LHC Upgrades
 - Twin-aperture model MBHDP01:
 - B_{max}=11.5 T (2D calculated TF)
 - Single-aperture models MBHSP02, MBHSP03:
 - B_{max}=11.6 T (measured TF)

One of the goals of this program was technology transfer to CERN, which has been successful.

MBHSP02, MBHSP03

MBHDP01

FNAL HFM Program Plan 2015-2025

- FNAL HFM R&D plan was coordinated with the recent P5 recommendations and updated DOE-HEP General Accelerator R&D (GARD) program:
 - <u>Recommendation 24</u>: "Participate in global conceptual design studies and critical path R&D for future very high-energy proton-proton colliders. Continue to play a leadership role in superconducting magnet technology focused on the dual goals of increasing performance and decreasing costs."
- In collaboration with the U.S. National laboratories, universities and industry:
 - Develop 15-16 T SC dipole magnets, suitable for the future 100 TeV scale pp collider, based on Nb₃Sn superconductor and innovative approaches which would lead to a substantial reduction of magnet production, installation and operation costs.
 - Explore very high field, 20-25 T, accelerator magnets beyond the limits of Nb₃Sn technology based on combination of LTS (Nb₃Sn) and HTS (Bi-2212 or YBCO) coils.
 - Develop suitable SC materials (strands, cables, structural materials, etc.) for 15-25 T accelerator magnets.

Magnet R&D Summary and Plans

15 T Dipole Demonstrator

- Design concept:
 - Coil bore: 60-mm
 - Final design: 4-layers, graded
 - Interim design: 11 T coil
 - Cold iron yoke
 - Bore B_{max}=15.6/14.6 T @4.3 K
 - +10% at 1.9K
- <u>Structure:</u>
 - Thin coil-yoke spacer
 - Stainless steel clamps
 - Bolted skin (from 11 T dipole)
 - Cold mass length: 1 m
 - Cold mass OD<610 mm
- Protection heaters:
 - Up to 80% of coil volume

Optimized graded coil

Interim coil design

First Technique for Thin Films of Nb₃Sn on Nb substrate

XRD and GDOES analysis of Cu/Sn/Cu/Nb Samples after Thermal Treatment

[Barzi, Bestetti, Franz, "Synthesis of Superconductive Nb₃Sn Coatings onto Nb Substrates", under submission to APS Journal]

Second Technique for Thin Films of Nb₃Sn on Cu substrate

This is the first time that Nb₃Sn is reproducibly formed directly in molecular form on any material, and at much lower temperatures (100°-130°C), than in any other state-of-the-art method, which is by solid diffusion at very high temperature (650°C+).

Liquids", under submission to APS journal]

Conclusions

FCC needs:

- Cost-effective main dipole magnets with nominal operation fields of 10 to 15 T based on Nb₃Sn technology
- Special magnets with operation fields up to 20+ T based on HTS/LTS coils
- ✤ The explored range for Nb₃Sn magnets is 10 to 13.5 T:
 - 11-12 T Nb₃Sn magnets Dipoles and Quadrupoles are planned for the LHC upgrades
- Problems to be understood and resolved for FCC:
 - Nb₃Sn magnets: demonstration of 15-16 T nominal field, improvement of magnet training, reduction of conductor degradation, magnet cost optimization
 - HTS magnets: feasibility, technology, HTS cable
- Fermilab has a sound realistic program to address these challenges, and a National SC magnet collaboration is being formed with Fermilab taking a leadership role
- This consistent 15-year Nb₃Sn magnet R&D has produced a by-product with strong potential for applications in high performance SRF cavities and magnetic shields