

A new-concept calorimeter for future neutrino beams based on Kaon tagging

PoT for 10^4

Introduction, physics goals

• Measurement of leptonic CP violation: modulations in the energy spectrum of v from $v_{\mu} \rightarrow v_{e}$: knowing well the v_{e} cross section is crucial

• International experiments based in JP (Hyper-Kamiokande) or in the US (DUNE)

• Current mesurements (Gargamelle, T2K) limited by systematics in the neutrino flux for conventional neutrino beams (~10% normalisation error)

 \rightarrow A new-generation v source based on tagging of e⁺ from K_a decays $K^+ \rightarrow e^+ \pi^0 v_a$

Tagged neutrino beam layout v_{n} flux proportional to the e^+ rate in the tagger **v** flux will NOT depend on hadro-production, K/π e^+ tagger $R_{in} = 0.40 m$, $R_{out} = 0.57 m$ Beam dump K/ π entrance window production ratio, Protons on Target (PoT), 2^{ry} beamline 500 ton $10 \times 10 \text{ cm}^2$... ground ... v-detector efficiency but only on: the geometrical acceptance of (LAr) q-selection the e^+ -tagger/v-detector, the e^+ tagger efficiency and the p-target 50 m mastering of residual backgrounds \rightarrow 100 m O(1%) systematic error achievable • $10^4 \nu_{c}^{CC}$ from $1.94 \times 10^{17} \text{ K}^+$ Focusing: Transport/focusing beamline ouput: magnetic horn • K^+/π^+ 8.5 GeV/c ± 20% θ < 3 mrad $\rightarrow v_{\rho}^{CC}$ precision measurement • 85% of e⁺ with a v crossing the far detector rates on 500 t + required prot. on target **Particle rates in the tagger** e⁺ angular distribution e^+/π^+ energy distribution E(prot.) (with 10¹⁰ focused π^+ /spill) $\frac{1}{5}_{300}$ Well matched 5 450⊨

Radiation tolerance \rightarrow Integrated dose during a few years < 1.3 kGy

A 2 GeV positron impinging on the shashlik calorimenter with an 88 mrad angle (GEANT4)

Tagger structure and modularity

2 inner layers = 2×6 e.m. modules

Summary

- Fast, radiation hard detectors allows for a reconsideration of the tagged neutrino beams idea. A realistic setup has been proposed for the first time.
- Reduced systematics in the neutrino flux $\rightarrow \sigma(v)$ at 1% with a 0.5 kt v-detector +

reasonable PoT $(0.5-5x10^{20})$.

• 2^{nd} phase: with long proton extractions, O(1) s, and continuous beam focusing devices (i.e. large aperture quads.): event-by-event time tagging might also become viable.

Prospects

- Full GEANT4 simulation is in progress.
- Construction of prototypes for the electro-magnetic module and test-beam at CERN with π/e beams planned.
- A 3 m long demonstrator (ENUBET, Enhanced NeUtrino BEams with kaon Tagging) possibly at the CERN v platform is envisaged.
- A working group is forming. Open to interested parties!

andrea.longhin@lnf.infn.it lucio.ludovici@roma1.infn.it francesco.terranova@mib.infn.it