A new-concept calorimeter for future neutrino beams based on Kaon tagging

A. Longhin (INFN-LNF) L. Ludovici (INFN-RM1) F. Terranova (Univ INFN MIB) Eur. Phys. J. C (2015) 75:155

- Knowing the \mathbf{v}_{e} cross section is crucial for Leptonic CP violation (modulations of \mathbf{v}_{e} from $\mathbf{v}_{\mu} \rightarrow \mathbf{v}_{\mathrm{e}}$)
- Present measurements w. conventional \boldsymbol{v} beams limited by syst. in the flux ($\sim 10 \%$ norm. error) \rightarrow A new-generation v source based on tagging of e^{+}from $\mathrm{K}_{\mathrm{e} 3}$ decays $\mathrm{K}^{+} \rightarrow \mathrm{e}^{+} \pi^{0} v_{\mathrm{e}}$

K / π entr. window $10 \times 10 \mathrm{~cm}^{2}$	e^{+}tagger $R_{\text {in }}=0.40 \mathrm{~m}, R_{\text {out }}=0.57 \mathrm{~m}$	Beam dump		
	K^{+} e^{+}		rou	$500 \text { ton }$
	π^{0}			v-detecto
p-target \quad-selection	50 m	-4	50 m	(LAr)

Focusing:
magnetic horn

Transport/focusing beamline ouput:

- $\mathrm{K}^{+} / \pi^{+} 8.5 \mathrm{GeV} / \mathrm{c} \pm 20 \% \quad \theta<3 \mathrm{mrad}$
- 85% of e^{+}with a v_{e} crossing the far detector
- $\mathbf{1} v_{\mathrm{e}}{ }^{\text {CC }}$ every $\mathbf{1 . 9 4 \times 1 0}{ }^{13} \mathrm{~K}^{+}$
v_{e} flux proportional to the e^{+}rate in the tagger v_{e} flux will NOT depend on hadro-production, K / π production ratio, Protons on Target (PoT), $2^{\text {ry }}$ beamline efficiency but only on: the geometrical acceptance of the e^{+}-tagger $/ v$-detector, the \mathbf{e}^{+} tagger efficiency and the mastering of residual backgrounds. $\mathbf{O}(1 \%)$ systematic error achievable $\rightarrow \mathrm{v}_{\mathrm{e}}^{\mathrm{CC}}$ precision measurement

Proposed technology: Shashlik calorimeter (0.5 cm scintillator tiles +1.5 cm Copper slabs) Wave Length Shifting fibers running along the average e^{+}direction (i.e. almost perpendicular to the tiles) with $\sim 1 \mathrm{~cm}$ pitch, read-out by small area Silicon Photo-Multipliers

Radial views (the 2π geometry is obtained with 76 azimuthal modules)

1 Si-PM per fiber, avoid bundling to improve the longitudinal sampling uniformity

Full module
2 inner layers $=2 \times 6$ e.m. modules 6 outer layers $=$ hadronic modules 60 cm

- Full GEANT4 simulation in progress.
- test-beam with $\pi /$ e beams planned for e.m. module.
- A 3 m long demonstrator (ENUBET, Enhanced NeUtrino BEams with kaon Tagging) possibly at the CERN v platform is envisaged.
- A working group is forming. Open to interested parties!

