Knowing the ν_e cross section is crucial for Leptonic CP violation (modulations of ν_e from $\nu_\mu \to \nu_e$)

Present measurements w. conventional ν beams limited by syst. in the flux (\sim10% norm. error)

→ A new-generation ν source based on tagging of e^+ from K_{e3} decays $K^+ \to e^+ \pi^0 \nu_e$

ν_e flux proportional to the e^+ rate in the tagger

ν_e flux will NOT depend on hadro-production, K/π production ratio, Protons on Target (PoT), 2nd beamline efficiency but only on: the geometrical acceptance of the e^+-tagger/ν-detector, the e^+ tagger efficiency and the mastering of residual backgrounds. O(1%) systematic error achievable

→ ν_e^{CC} precision measurement
Proposed technology: **Shashlik** calorimeter (0.5 cm scintillator tiles + 1.5 cm Copper slabs)

Wave **Length Shifting fibers** running along the average e^+ direction (i.e. almost perpendicular to the tiles) with ~ 1 cm pitch, read-out by small area **Silicon Photo-Multipliers**

Proposed scheme

- Full GEANT4 simulation in progress.
- **test-beam with π/e beams** planned for e.m. module.
- A **3 m long demonstrator** (**ENUBET**, Enhanced NeUtrino BEams with kaon Tagging) possibly at the **CERN ν platform** is envisaged.
- A **working group** is forming. Open to interested parties!