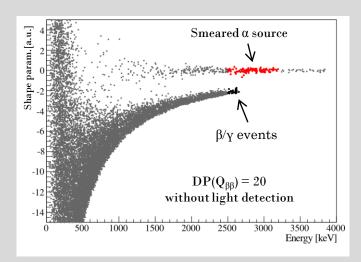

A scintillating bolometer array for double beta decay studies: the LUCIFER experiment

Luca Gironi on behalf of the LUCIFER collaboration

The Low-background Underground Cryogenics Installation For Elusive Rates (LUCIFER)

The LUCIFER setup will consist of an array of 30 individual module detectors, arranged in a tower-like structure installed underground in the Laboratori Nazionali del Gran Sasso. Each module will be composed by a ~0.5 kg enriched (95%) ZnSe scintillating crystal equipped with a Ge-crystal light detector operated as bolometers at ~10 mK. The goal of Lucifer is to reach sensitivity of few 10^{25} y for the search of the neutrinoless double beta decay and to be a demonstrator for a background free experiment.

A scintillating bolometer array for double beta decay studies: the LUCIFER experiment



Luca Gironi on behalf of the LUCIFER collaboration

ZnMoO4

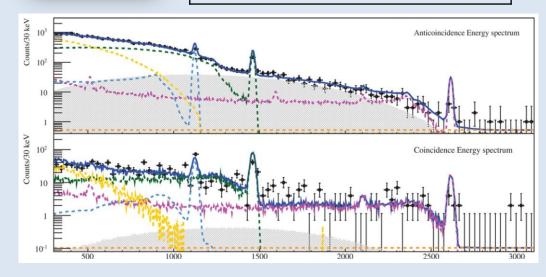
Successful R&D pursued within LUCIFER with Mobased compound before choosing ZnSe.

Isotope	Q-value	i.a.
$^{100}\mathrm{Mo}$	$3034\mathrm{keV}$	9.6 %

They demonstrate the very appealing possibility to discriminate particle through pulse shape analysis on the heat channel.

Background reduction without a double readout.

2vDBD of ¹⁰⁰Mo


The large statistics collected during the operation of a ZnMoO₄ array, for a total exposure of 1.3 kg day of ¹⁰⁰Mo, allowed the first bolometric observation of the 2vDBD of ¹⁰⁰Mo. The analysis of coincidences between the crystals allowed the assignment of constraints to the intensity of the different background sources, resulting in a reconstruction of the measured spectrum down to an energy of ~300 keV.

T

$$\int_{1/2}^{2\nu} ({}^{100} \text{ Mo}) = [7.15 \pm 0.37 (stat) \pm 0.66 (syst)] \times 10^{-18} \text{ s}$$

Crystal mass (g)	Anticoincidence	Coincidence
247	509 ± 26	4.4 ± 0.2
235	472 ± 24	5.4 ± 0.3
329	661 ± 34	6.2 ± 0.3

Number of events from the 2vDBD of ¹⁰⁰Mo in the anticoincidence spectrum and in the coincidence spectrum for each crystal.

