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Why evaporative cooling?

v' Low flow and higher Heat Transfer Coefficient Significant saving on material budget v Environmental friendly
(HTC) : smaller pipes! v’ large latent heat of evaporation with respect to presently
v’ Limited temperature excursion on the detector: v low liquid viscosity used fluorocarbons
isothermal evaporation v" higher Heat Transfer Coefficient than, e.g. C;F; v Radiation resistant
v’ Temperature control through pressure control v high thermal stability due to the high pressure v’ Cheap
lmehne & performances CMS T Upgrade
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/Technological challenges

- Low temperature (practical operation limit

@ -40°C)
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The challenges:

- Space constraints
Environmental policy
Low T limits & stability (evaporation T on primary =
-45°C)

Solid industrial components: reliability &

maintainability

The regulation concept

2PACL system: local accumulator and pressure control through
heating and cooling of the vessel
requires local underground fluid storage
can be designed with one active accumulator + local warm
storage volume (bottles? -> concerns for underground)
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Con clusions
R&D and conceptual development exploiting full synergies for Phase Il detectors
* LHCb Upgrade profiting of the experience of both ATLAS and CMS on CO, cooling

* Common Demo system necessary on medium term to verify conceptual design

* (O, cooling is a complex system where on-detector and off-detector design shall
be developed together: synergies and collaboration needed between detector
experts and cooling team
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