

CO2 evaporative cooling: the future for tracking detector thermal management

P. Tropea, J. Daguin, P. Petagna, H. Postema, L. Zwalinski, B. Verlaat

Why evaporative cooling?

- ✓ Low flow and higher Heat Transfer Coefficient (HTC): smaller pipes!
- ✓ Limited temperature excursion on the detector: isothermal evaporation

LHCb Velo 1 kW, -30 °C

> ATLAS IBL 2 x 3 kW, -35 °C

Why CO_2 ?

Significant saving on material budget

- √ large latent heat of evaporation
- ✓ low liquid viscosity
- ✓ higher Heat Transfer Coefficient than, e.g. C₃F₈
- ✓ high thermal stability due to the high pressure

Very practical fluid to work with

- ✓ Environmental friendly with respect to presently used fluorocarbons
- ✓ Radiation resistant
- ✓ Cheap

CMS Tk Upgrade 100 kW, - 30°C

CMS Pixel Phase I 2×15 kW, -25 °C LHCb Velo II & UT 2 x 7 kW, -30 °C

ATLAS ITK Upgrade 140 kW, - 35°C

2014

2015-17

2018-19

2023-24

2003

Challenges to next generation of CO2 systems

Primary systems TO BE TESTED: industrial CO2 chillers

- up to several hundred kWs
- small footprint
- Environmental friendly
- Good T range

CO2 storage & regulation of complex system

Alternative to 2PACL: design to allow surface storage (local pump and pressure control through pressure regulation valves)

Redundancy concept of N+1 plants: swap in operation, distribution, optimization of transfer lines. R&D needed for parallel operation!

Common concept being developed @ CERN for next generation CO₂ plants!

Conclusions

- R&D and conceptual development exploiting full synergies for Phase II detectors
- LHCb Upgrade profiting of the experience of both ATLAS and CMS on CO₂ cooling
- Common Demo system necessary on medium term to verify conceptual design
- CO₂ cooling is a complex system where on-detector and off-detector design shall be developed together: synergies and collaboration needed between detector experts and
 - cooling team