
Julius-Maximilians-UNIVERSITÄT WÜRZBURG

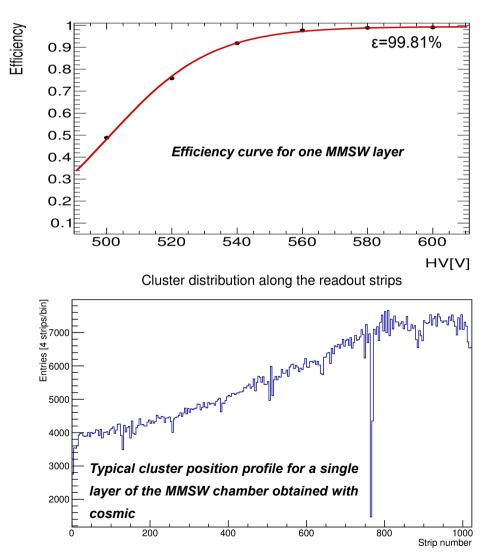
Characterization of the ATLAS Micromegas quadruplet prototype

<u>O. Sidiropoulou</u>, M. Bianco, H. Danielsson, J. Degrange, E.M. Farina, F. P. Gomez, P. Iengo, F. Kuger, T.H. Lin, M. Schott, G. Sekhniaidze, C. Valderanis, M. Vergain, J. Wotchack

Micromegas princliple

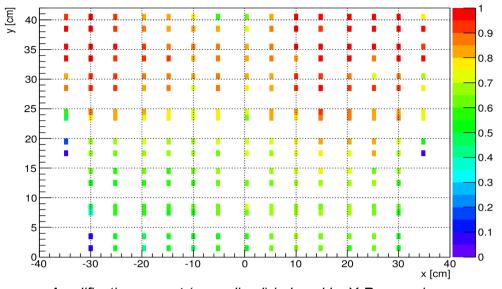
- Parallel plate avalanche chambers (Giomataris et. al. 1996).
- Several mm wide drift region and ~0.1 mm wide amplification region, separated by thin conductive micro-mesh.
- Charged particles/photons traversing drift space ionize the gas releasing electron-ion pairs.
- Electrons drift within 100 ns into the high-field amplification region multiplied in avalanche, while ions drift towards to cathode.

Micromegas Small Wheel (MMSW) prototype

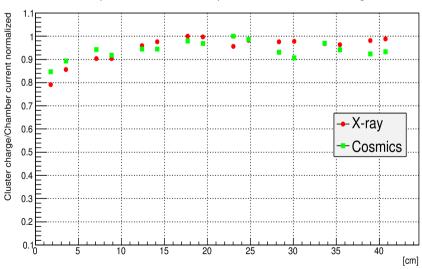

Towards the upgrade of the innermost end-cap stations of the ATLAS muon system a 0.5 m^2 quadruplet prototype has been built.

- Two double sided readout panels, 1 with horizontal strips 1 with inclined strips ($\pm 1.5^{\circ}$). 1024 strips per plane with 415 µm strip pitch.
 - Readout planes are covered by thin Kapton® Foil layer for spark tolerance. Pillars of 128 µm height are built on top to define mesh position
- 3 drift panels with space bars hold the mesh and define the drift region.

Cosmic Tests


Dedicated cosmic stand in RD51 DGG laboratory at CERN used for cosmic tests.

• Readout chamber with front-end electronics based on APV-25 ASIC, Scalable Read-out System (SRS) and dedicated DAQ software



Map of amplification current by X-ray

Amplification current (normalized) induced by X-Ray gun in one MMSW layer using a small collimator.

To check uniformity of chambers X-Ray and Cosmic rays can be compared

Comparison between amplification current, with X-Ray irradiation, and average cluster charge, with cosmic events, for one MMSW layer.

X-Ray	Cosmic
Pros	• Pros
✓ No front-end electronics	 Fully chamber characterization
 No DAQ system 	 Complete channel map
 Only HV monitoring 	•
Cons	Cons
X No info of the readout	X DAQ system with large amount
X channels (dead/missing channels)	of readout channels
X Dedicated instrument and setup	x Time consuming

Amplification current compared with the cluster charge